RESUMEN
Glutaminyl cyclase (QC) modifies N-terminal glutamine or glutamic acid residues of target proteins into cyclic pyroglutamic acid (pGlu). Here, we report the biochemical and functional analysis of Plasmodium QC. We show that sporozoites of QC-null mutants of rodent and human malaria parasites are recognized by the mosquito immune system and melanized when they reach the hemocoel. Detailed analyses of rodent malaria QC-null mutants showed that sporozoite numbers in salivary glands are reduced in mosquitoes infected with QC-null or QC catalytically dead mutants. This phenotype can be rescued by genetic complementation or by disrupting mosquito melanization or phagocytosis by hemocytes. Mutation of a single QC-target glutamine of the major sporozoite surface protein (circumsporozoite protein; CSP) of the rodent parasite Plasmodium berghei also results in melanization of sporozoites. These findings indicate that QC-mediated posttranslational modification of surface proteins underlies evasion of killing of sporozoites by the mosquito immune system.
Asunto(s)
Aminoaciltransferasas , Culicidae , Malaria , Procesamiento Proteico-Postraduccional , Esporozoítos , Aminoaciltransferasas/inmunología , Animales , Culicidae/inmunología , Ácido Glutámico/metabolismo , Glutamina/metabolismo , Humanos , Malaria/genética , Malaria/inmunología , Malaria/parasitología , Plasmodium berghei/genética , Plasmodium berghei/inmunología , Procesamiento Proteico-Postraduccional/inmunología , Proteínas Protozoarias/inmunología , Esporozoítos/inmunologíaRESUMEN
BACKGROUND: Sporozoites (SPZ), the infective form of Plasmodium falciparum malaria, can be inoculated into the human host skin by Anopheline mosquitoes. These SPZ migrate at approximately 1 µm/s to find a blood vessel and travel to the liver where they infect hepatocytes and multiply. In the skin they are still low in number (50-100 SPZ) and vulnerable to immune attack by antibodies and skin macrophages. This is why whole SPZ and SPZ proteins are used as the basis for most malaria vaccines currently deployed and undergoing late clinical testing. Mosquitoes typically inoculate SPZ into a human host between 14 and 25 days after their previous infective blood meal. However, it is unknown whether residing time within the mosquito affects SPZ condition, infectivity or immunogenicity. This study aimed to unravel how the age of P. falciparum SPZ in salivary glands (14, 17, or 20 days post blood meal) affects their infectivity and the ensuing immune responses. METHODS: SPZ numbers, viability by live/dead staining, motility using dedicated sporozoite motility orienting and organizing tool software (SMOOT), and infectivity of HC-04.j7 liver cells at 14, 17 and 20 days after mosquito feeding have been investigated. In vitro co-culture assays with SPZ stimulated monocyte-derived macrophages (MoMɸ) and CD8+ T-cells, analysed by flow cytometry, were used to investigate immune responses. RESULTS: SPZ age did not result in different SPZ numbers or viability. However, a markedly different motility pattern, whereby motility decreased from 89% at day 14 to 80% at day 17 and 71% at day 20 was observed (p ≤ 0.0001). Similarly, infectivity of day 20 SPZ dropped to ~ 50% compared with day 14 SPZ (p = 0.004). MoMɸ were better able to take up day 14 SPZ than day 20 SPZ (from 7.6% to 4.1%, p = 0.03) and displayed an increased expression of pro-inflammatory CD80, IL-6 (p = 0.005), regulatory markers PDL1 (p = 0.02), IL-10 (p = 0.009) and cytokines upon phagocytosis of younger SPZ. Interestingly, co-culture of these cells with CD8+ T-cells revealed a decreased expression of activation marker CD137 and cytokine IFNγ compared to their day 20 counterparts. These findings suggest that older (day 17-20) P. falciparum SPZ are less infectious and have decreased immune regulatory potential. CONCLUSION: Overall, this data is a first step in enhancing the understanding of how mosquito residing time affects P. falciparum SPZ and could impact the understanding of the P. falciparum infectious reservoir and the potency of whole SPZ vaccines.
Asunto(s)
Culicidae , Vacunas contra la Malaria , Malaria Falciparum , Animales , Humanos , Esporozoítos , Linfocitos T CD8-positivos , Envejecimiento , Plasmodium falciparumRESUMEN
Professional antigen-presenting cells (APCs), like macrophages (MÏs) and dendritic cells (DCs), are central players in the induction of natural and vaccine-induced immunity to malaria, yet very little is known about the interaction of SPZ with human APCs. Intradermal delivery of whole-sporozoite vaccines reduces their effectivity, possibly due to dermal immunoregulatory effects. Therefore, understanding these interactions could prove pivotal to malaria vaccination. We investigated human APC responses to recombinant circumsporozoite protein (recCSP), SPZ and anti-CSP opsonized SPZ both in monocyte derived MoDCs and MoMÏs. Both MoDCs and MoMÏs readily took up recCSP but did not change phenotype or function upon doing so. SPZ are preferentially phagocytosed by MoMÏs instead of DCs and phagocytosis greatly increased after opsonization. Subsequently MoMÏs show increased surface marker expression of activation markers as well as tolerogenic markers such as Programmed Death-Ligand 1 (PD-L1). Additionally they show reduced motility, produce interleukin 10 and suppressed interferon gamma (IFNγ) production by antigen specific CD8+ T cells. Importantly, we investigated phenotypic responses to SPZ in primary dermal APCs isolated from human skin explants, which respond similarly to their monocyte-derived counterparts. These findings are a first step in enhancing our understanding of pre-erythrocytic natural immunity and the pitfalls of intradermal vaccination-induced immunity.
Asunto(s)
Células Presentadoras de Antígenos/inmunología , Macrófagos/inmunología , Malaria/inmunología , Plasmodium berghei/inmunología , Proteínas Protozoarias/inmunología , Piel/inmunología , Esporozoítos/inmunología , Animales , Células Cultivadas , Femenino , Humanos , Macrófagos/parasitología , Malaria/parasitología , Ratones , Piel/parasitologíaRESUMEN
[This corrects the article DOI: 10.1371/journal.ppat.1005917.].
RESUMEN
BACKGROUND: The protective efficacy of the most promising malaria whole-parasite based vaccine candidates critically depends on the parasite's potential to migrate in the human host. Key components of the parasite motility machinery (e.g. adhesive proteins, actin/myosin-based motor, geometrical properties) have been identified, however the regulation of this machinery is an unknown process. METHODS: In vitro microscopic live imaging of parasites in different formulations was performed and analysed, with the quantitative analysis software SMOOTIn vitro, their motility; their adherence capacity, movement pattern and velocity during forward locomotion. RESULTS: SMOOTIn vitro enabled the detailed analysis of the regulation of the motility machinery of Plasmodium berghei in response to specific (macro)molecules in the formulation. Albumin acted as an essential supplement to induce parasite attachment and movement. Glucose, salts and other whole serum components further increased the attachment rate and regulated the velocity of the movement. CONCLUSIONS: Based on the findings can be concluded that a complex interplay of albumin, glucose and certain salts and amino acids regulates parasite motility. Insights in parasite motility regulation by supplements in solution potentially provide a way to optimize the whole-parasite malaria vaccine formulation.
Asunto(s)
Medios de Cultivo/química , Locomoción/efectos de los fármacos , Plasmodium berghei/efectos de los fármacos , Esporozoítos/fisiología , Albúminas/farmacología , Animales , Culicidae/parasitología , Medios de Cultivo/farmacología , Femenino , Glucosa/farmacología , Microscopía Intravital , Malaria/parasitología , Ratones , Plasmodium berghei/fisiología , Programas InformáticosRESUMEN
Transmission of the malaria parasite from the mammalian host to the mosquito vector requires the formation of adequately adapted parasite forms and stage-specific organelles. Here we show that formation of the crystalloid-a unique and short-lived organelle of the Plasmodium ookinete and oocyst stage required for sporogony-is dependent on the precisely timed expression of the S-acyl-transferase DHHC10. DHHC10, translationally repressed in female Plasmodium berghei gametocytes, is activated translationally during ookinete formation, where the protein is essential for the formation of the crystalloid, the correct targeting of crystalloid-resident protein LAP2, and malaria parasite transmission.
Asunto(s)
Aciltransferasas/fisiología , Plasmodium berghei/patogenicidad , Proteínas Protozoarias/fisiología , Animales , Femenino , Malaria/transmisión , Ratones Endogámicos BALB C , Oocistos/fisiología , Orgánulos/fisiología , Plasmodium berghei/enzimología , Plasmodium berghei/fisiologíaRESUMEN
Many variant proteins encoded by Plasmodium-specific multigene families are exported into red blood cells (RBC). P. falciparum-specific variant proteins encoded by the var, stevor and rifin multigene families are exported onto the surface of infected red blood cells (iRBC) and mediate interactions between iRBC and host cells resulting in tissue sequestration and rosetting. However, the precise function of most other Plasmodium multigene families encoding exported proteins is unknown. To understand the role of RBC-exported proteins of rodent malaria parasites (RMP) we analysed the expression and cellular location by fluorescent-tagging of members of the pir, fam-a and fam-b multigene families. Furthermore, we performed phylogenetic analyses of the fam-a and fam-b multigene families, which indicate that both families have a history of functional differentiation unique to RMP. We demonstrate for all three families that expression of family members in iRBC is not mutually exclusive. Most tagged proteins were transported into the iRBC cytoplasm but not onto the iRBC plasma membrane, indicating that they are unlikely to play a direct role in iRBC-host cell interactions. Unexpectedly, most family members are also expressed during the liver stage, where they are transported into the parasitophorous vacuole. This suggests that these protein families promote parasite development in both the liver and blood, either by supporting parasite development within hepatocytes and erythrocytes and/or by manipulating the host immune response. Indeed, in the case of Fam-A, which have a steroidogenic acute regulatory-related lipid transfer (START) domain, we found that several family members can transfer phosphatidylcholine in vitro. These observations indicate that these proteins may transport (host) phosphatidylcholine for membrane synthesis. This is the first demonstration of a biological function of any exported variant protein family of rodent malaria parasites.
Asunto(s)
Hepatocitos/virología , Malaria Falciparum/metabolismo , Proteínas Protozoarias/metabolismo , Animales , Modelos Animales de Enfermedad , Eritrocitos/parasitología , Técnica del Anticuerpo Fluorescente , Humanos , Hígado , Malaria Falciparum/virología , Ratones , Familia de Multigenes , Organismos Modificados Genéticamente , Filogenia , Plasmodium falciparum , Transporte de Proteínas , Vacuolas/virologíaRESUMEN
[This corrects the article DOI: 10.1371/journal.ppat.1005917.].
RESUMEN
BACKGROUND: Rodent malaria parasites where the gene encoding circumsporozoite protein (CSP) has been replaced with csp genes from the human malaria parasites, Plasmodium falciparum or Plasmodium vivax, are used as pre-clinical tools to evaluate CSP vaccines in vivo. These chimeric rodent parasites produce sporozoites in Anopheles stephensi mosquitoes that are capable of infecting rodent and human hepatocytes. The availability of chimeric P. falciparum parasites where the pfcsp gene has been replaced by the pvcsp would open up possibilities to test P. vivax CSP vaccines in small scale clinical trials using controlled human malaria infection studies. METHODS: Using CRISPR/Cas9 gene editing two chimeric P. falciparum parasites, were generated, where the pfcsp gene has been replaced by either one of the two major pvcsp alleles, VK210 or VK247. In addition, a P. falciparum parasite line that lacks CSP expression was also generated. These parasite lines have been analysed for sporozoite production in An. stephensi mosquitoes. RESULTS: The two chimeric Pf-PvCSP lines exhibit normal asexual and sexual blood stage development in vitro and produce sporozoite-containing oocysts in An. stephensi mosquitoes. Expression of the corresponding PvCSP was confirmed in oocyst-derived Pf-PvCSP sporozoites. However, most oocysts degenerate before sporozoite formation and sporozoites were not found in either the mosquito haemocoel or salivary glands. Unlike the chimeric Pf-PvCSP parasites, oocysts of P. falciparum parasites lacking CSP expression do not produce sporozoites. CONCLUSIONS: Chimeric P. falciparum parasites expressing P. vivax circumsporozoite protein fail to produce salivary gland sporozoites. Combined, these studies show that while PvCSP can partially complement the function of PfCSP, species-specific features of CSP govern full sporozoite maturation and development in the two human malaria parasites.
Asunto(s)
Anopheles/parasitología , Quimera/genética , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Esporozoítos/fisiología , Animales , Expresión Génica , Plasmodium vivax/genética , Proteínas Protozoarias/metabolismo , Glándulas Salivales/parasitologíaRESUMEN
Multidrug resistance-associated proteins (MRPs) belong to the C-family of ATP-binding cassette (ABC) transport proteins and are known to transport a variety of physiologically important compounds and to be involved in the extrusion of pharmaceuticals. Rodent malaria parasites encode a single ABC transporter subfamily C protein, whereas human parasites encode two: MRP1 and MRP2. Although associated with drug resistance, their biological function and substrates remain unknown. To elucidate the role of MRP throughout the parasite life cycle, Plasmodium berghei and Plasmodium falciparum mutants lacking MRP expression were generated. P. berghei mutants lacking expression of the single MRP as well as P. falciparum mutants lacking MRP1, MRP2 or both proteins have similar blood stage growth kinetics and drug-sensitivity profiles as wild type parasites. We show that MRP1-deficient parasites readily invade primary human hepatocytes and develop into mature liver stages. In contrast, both P. falciparum MRP2-deficient parasites and P. berghei mutants lacking MRP protein expression abort in mid to late liver stage development, failing to produce mature liver stages. The combined P. berghei and P. falciparum data are the first demonstration of a critical role of an ABC transporter during Plasmodium liver stage development.
Asunto(s)
Hígado/parasitología , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Plasmodium berghei/patogenicidad , Plasmodium falciparum/patogenicidad , Esporozoítos/fisiología , Animales , Animales Modificados Genéticamente , Antimaláricos/farmacología , Sangre/parasitología , Femenino , Hepatocitos/parasitología , Interacciones Huésped-Parásitos , Humanos , Ratones , Ratones Endogámicos C57BL , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Mutación , Plasmodium berghei/genética , Plasmodium berghei/metabolismo , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Esporozoítos/metabolismoRESUMEN
The 10 Plasmodium 6-Cys proteins have critical roles throughout parasite development and are targets for antimalaria vaccination strategies. We analyzed the conserved 6-cysteine domain of this family and show that only the last 4 positionally conserved cysteine residues are diagnostic for this domain and identified 4 additional "6-Cys family-related" proteins. Two of these, sequestrin and B9, are critical to Plasmodium liver-stage development. RT-PCR and immunofluorescence assays show that B9 is translationally repressed in sporozoites and is expressed after hepatocyte invasion where it localizes to the parasite plasma membrane. Mutants lacking B9 expression in the rodent malaria parasites P. berghei and P. yoelii and the human parasite P. falciparum developmentally arrest in hepatocytes. P. berghei mutants arrest in the livers of BALB/c (100%) and C57BL6 mice (>99.9%), and in cultures of Huh7 human-hepatoma cell line. Similarly, P. falciparum mutants while fully infectious to primary human hepatocytes abort development 3 d after infection. This growth arrest is associated with a compromised parasitophorous vacuole membrane a phenotype similar to, but distinct from, mutants lacking the 6-Cys sporozoite proteins P52 and P36. Our results show that 6-Cys proteins have critical but distinct roles in establishment and maintenance of a parasitophorous vacuole and subsequent liver-stage development.
Asunto(s)
Regulación de la Expresión Génica , Hepatocitos/parasitología , Plasmodium/metabolismo , Proteínas Protozoarias/metabolismo , Animales , Línea Celular , Biología Computacional , Cisteína/metabolismo , Femenino , Genotipo , Proteínas Fluorescentes Verdes/metabolismo , Malaria/parasitología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Mutación , Fenotipo , Plasmodium berghei/metabolismo , Plasmodium falciparum/metabolismo , Plasmodium yoelii/metabolismo , Biosíntesis de Proteínas , Esporozoítos/crecimiento & desarrolloRESUMEN
Model antigens are frequently introduced into pathogens to study determinants that influence T-cell responses to infections. To address whether an antigen's subcellular location influences the nature and magnitude of antigen-specific T-cell responses, we generated Plasmodium berghei parasites expressing the model antigen ovalbumin (OVA) either in the parasite cytoplasm or on the parasitophorous vacuole membrane (PVM). For cytosolic expression, OVA alone or conjugated to mCherry was expressed from a strong constitutive promoter (OVAhsp70 or OVA::mCherryhsp70); for PVM expression, OVA was fused to HEP17/EXP1 (OVA::Hep17hep17). Unexpectedly, OVA expression in OVAhsp70 parasites was very low, but when OVA was fused to mCherry (OVA::mCherryhsp70), it was highly expressed. OVA expression in OVA::Hep17hep17 parasites was strong but significantly less than that in OVA::mCherryhsp70 parasites. These transgenic parasites were used to examine the effects of antigen subcellular location and expression level on the development of T-cell responses during blood-stage infections. While all OVA-expressing parasites induced activation and proliferation of OVA-specific CD8(+) T cells (OT-I) and CD4(+) T cells (OT-II), the level of activation varied: OVA::Hep17hep17 parasites induced significantly stronger splenic and intracerebral OT-I and OT-II responses than those of OVA::mCherryhsp70 parasites, but OVA::mCherryhsp70 parasites promoted stronger OT-I and OT-II responses than those of OVAhsp70 parasites. Despite lower OVA expression levels, OVA::Hep17hep17 parasites induced stronger T-cell responses than those of OVA::mCherryhsp70 parasites. These results indicate that unconjugated cytosolic OVA is not stably expressed in Plasmodium parasites and, importantly, that its cellular location and expression level influence both the induction and magnitude of parasite-specific T-cell responses. These parasites represent useful tools for studying the development and function of antigen-specific T-cell responses during malaria infection.
Asunto(s)
Regulación de la Expresión Génica/fisiología , Malaria/parasitología , Ovalbúmina/metabolismo , Plasmodium berghei/metabolismo , Transporte de Proteínas/fisiología , Animales , Femenino , Malaria/sangre , Ratones , Organismos Modificados Genéticamente , Ovalbúmina/genética , Plasmodium berghei/genética , Bazo/citología , Linfocitos T/fisiologíaRESUMEN
Rhomboid-like proteases cleave membrane-anchored proteins within their transmembrane domains. In apicomplexan parasites substrates include molecules that function in parasite motility and host cell invasion. While two Plasmodium rhomboids, ROM1 and ROM4, have been examined, the roles of the remaining six rhomboids during the malaria parasite's life cycle are unknown. We present systematic gene deletion analyses of all eight Plasmodium rhomboid-like proteins as a means to discover stage-specific phenotypes and potential functions in the rodent malaria model, P. berghei. Four rhomboids (ROM4, 6, 7 and 8) are refractory to gene deletion, suggesting an essential role during asexual blood stage development. In contrast ROM1, 3, 9 and 10 were dispensable for blood stage development and exhibited no, subtle or severe defects in mosquito or liver development. Parasites lacking ROM9 and ROM10 showed no major phenotypic defects. Parasites lacking ROM1 presented a delay in blood stage patency following liver infection, but in contrast to a previous study blood stage parasites had similar growth and virulence characteristics as wild type parasites. Parasites lacking ROM3 in mosquitoes readily established oocysts but failed to produce sporozoites. ROM3 is the first apicomplexan rhomboid identified to play a vital role in sporogony.
Asunto(s)
Péptido Hidrolasas/metabolismo , Plasmodium berghei/enzimología , Plasmodium berghei/fisiología , Proteínas Protozoarias/metabolismo , Animales , Sangre/parasitología , Culicidae/parasitología , Femenino , Eliminación de Gen , Estadios del Ciclo de Vida , Hígado/parasitología , Malaria/parasitología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Péptido Hidrolasas/genética , Plasmodium berghei/genética , Plasmodium berghei/patogenicidad , Proteínas Protozoarias/genética , Esporozoítos/fisiología , VirulenciaRESUMEN
Despite promising results in malaria-naïve individuals, whole sporozoite (SPZ) vaccine efficacy in malaria-endemic settings has been suboptimal. Vaccine hypo-responsiveness due to previous malaria exposure has been posited as responsible, indicating the need for SPZ vaccines of increased immunogenicity. To this end, we here demonstrate a proof-of-concept for altering SPZ immunogenicity, where supramolecular chemistry enables chemical augmentation of the parasite surface with a TLR7 agonist-based adjuvant (SPZ-SAS(CL307)). In vitro, SPZ-SAS(CL307) remained well recognized by immune cells and induced a 35-fold increase in the production of pro-inflammatory IL-6 (p < 0.001). More promisingly, immunization of mice with SPZ-SAS(CL307) yielded improved SPZ-specific IFN-γ production in liver-derived NK cells (percentage IFN-γ+ cells 11.1 ± 1.8 vs. 9.4 ± 1.5%, p < 0.05), CD4+ T cells (4.7 ± 4.3 vs. 1.8 ± 0.7%, p < 0.05) and CD8+ T cells (3.6 ± 1.4 vs. 2.5 ± 0.9%, p < 0.05). These findings demonstrate the potential of using chemical augmentation strategies to enhance the immunogenicity of SPZ-based malaria vaccines.
Asunto(s)
Vacunas contra la Malaria , Malaria , Animales , Ratones , Linfocitos T CD8-positivos , Esporozoítos , Malaria/prevención & control , Adyuvantes InmunológicosRESUMEN
Whole-sporozoite (WSp) malaria vaccines induce protective immune responses in animal malaria models and in humans. A recent clinical trial with a WSp vaccine comprising genetically attenuated parasites (GAP) which arrest growth early in the liver (PfSPZ-GA1), showed that GAPs can be safely administered to humans and immunogenicity is comparable to radiation-attenuated PfSPZ Vaccine. GAPs that arrest late in the liver stage (LA-GAP) have potential for increased potency as shown in rodent malaria models. Here we describe the generation of four putative P. falciparum LA-GAPs, generated by CRISPR/Cas9-mediated gene deletion. One out of four gene-deletion mutants produced sporozoites in sufficient numbers for further preclinical evaluation. This mutant, PfΔmei2, lacking the mei2-like RNA gene, showed late liver growth arrest in human liver-chimeric mice with human erythrocytes, absence of unwanted genetic alterations and sensitivity to antimalarial drugs. These features of PfΔmei2 make it a promising vaccine candidate, supporting further clinical evaluation. PfΔmei2 (GA2) has passed regulatory approval for safety and efficacy testing in humans based on the findings reported in this study.
RESUMEN
To screen for additional vaccine candidate antigens of Plasmodium pre-erythrocytic stages, fourteen P. falciparum proteins were selected based on expression in sporozoites or their role in establishment of hepatocyte infection. For preclinical evaluation of immunogenicity of these proteins in mice, chimeric P. berghei sporozoites were created that express the P. falciparum proteins in sporozoites as an additional copy gene under control of the uis4 gene promoter. All fourteen chimeric parasites produced sporozoites but sporozoites of eight lines failed to establish a liver infection, indicating a negative impact of these P. falciparum proteins on sporozoite infectivity. Immunogenicity of the other six proteins (SPELD, ETRAMP10.3, SIAP2, SPATR, HT, RPL3) was analyzed by immunization of inbred BALB/c and outbred CD-1 mice with viral-vectored (ChAd63 or ChAdOx1, MVA) vaccines, followed by challenge with chimeric sporozoites. Protective immunogenicity was determined by analyzing parasite liver load and prepatent period of blood stage infection after challenge. Of the six proteins only SPELD immunized mice showed partial protection. We discuss both the low protective immunogenicity of these proteins in the chimeric rodent malaria challenge model and the negative effect on P. berghei sporozoite infectivity of several P. falciparum proteins expressed in the chimeric sporozoites.
Asunto(s)
Malaria Falciparum/parasitología , Plasmodium falciparum/patogenicidad , Animales , Anticuerpos Antiprotozoarios/inmunología , Anticuerpos Antiprotozoarios/metabolismo , Antígenos de Protozoos/inmunología , Antígenos de Protozoos/metabolismo , Eritrocitos/metabolismo , Femenino , Vacunas contra la Malaria/uso terapéutico , Malaria Falciparum/genética , Malaria Falciparum/inmunología , Ratones , Ratones Endogámicos BALB C , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/metabolismo , Proteína Ribosomal L3 , Esporozoítos/patogenicidadRESUMEN
Chimeric rodent malaria parasites with the endogenous circumsporozoite protein (csp) gene replaced with csp from the human parasites Plasmodium falciparum (Pf) and P. vivax (Pv) are used in preclinical evaluation of CSP vaccines. Chimeric rodent parasites expressing PfCSP have also been assessed as whole sporozoite (WSP) vaccines. Comparable chimeric P. falciparum parasites expressing CSP of P. vivax could be used both for clinical evaluation of vaccines targeting PvCSP in controlled human P. falciparum infections and in WSP vaccines targeting P. vivax and P. falciparum. We generated chimeric P. falciparum parasites expressing both PfCSP and PvCSP. These Pf-PvCSP parasites produced sporozoite comparable to wild type P. falciparum parasites and expressed PfCSP and PvCSP on the sporozoite surface. Pf-PvCSP sporozoites infected human hepatocytes and induced antibodies to the repeats of both PfCSP and PvCSP after immunization of mice. These results support the use of Pf-PvCSP sporozoites in studies optimizing vaccines targeting PvCSP.
Asunto(s)
Vacunas contra la Malaria , Malaria Falciparum , Malaria , Plasmodium falciparum , Plasmodium vivax , Animales , Anticuerpos Antiprotozoarios , Vacunas contra la Malaria/genética , Malaria Falciparum/prevención & control , Ratones , Plasmodium falciparum/genética , Plasmodium vivax/genética , Proteínas Protozoarias/genéticaRESUMEN
Transgenic reporter lines of malaria parasites that express fluorescent or luminescent proteins are valuable tools for drug and vaccine screening assays as well as to interrogate parasite gene function. Different Plasmodium falciparum (Pf ) reporter lines exist, however nearly all have been created in the African NF54/3D7 laboratory strain. Here we describe the generation of novel reporter lines, using CRISPR/Cas9 gene modification, both in the standard Pf NF54 background and in a recently described Cambodian P. falciparum NF135.C10 line. Sporozoites of this line show more effective hepatocyte invasion and enhanced liver merozoite development compared to Pf NF54. We first generated Pf NF54 reporter parasites to analyze two novel promoters for constitutive and high expression of mCherry-luciferase and GFP in blood and mosquito stages. The promoter sequences were selected based on available transcriptome data and are derived from two housekeeping genes, i.e., translation initiation factor SUI1, putative (sui1, PF3D7_1243600) and 40S ribosomal protein S30 (40s, PF3D7_0219200). We then generated and characterized reporter lines in the Pf NF135.C10 line which express GFP driven by the sui1 and 40s promoters as well as by the previously used ef1α promoter (GFP@ef1α, GFP@sui1, GFP@40s). The GFP@40s reporter line showed strongest GFP expression in liver stages as compared to the other two lines. The strength of reporter expression by the 40s promoter throughout the complete life cycle, including liver stages, makes transgenic lines expressing reporters by the 40s promoter valuable novel tools for analyses of P. falciparum.
Asunto(s)
Genes Reporteros , Plasmodium falciparum , Regiones Promotoras Genéticas , Animales , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Culicidae , Luciferasas/genética , Proteínas Luminiscentes/genética , Malaria Falciparum , Plasmodium falciparum/genética , EsporozoítosRESUMEN
Introduction: The skin stage of malaria is a vital and vulnerable migratory life stage of the parasite. It has been characterised in rodent models, but remains wholly uninvestigated for human malaria parasites. To enable in depth analysis of not genetically modified (non-GMO) Plasmodium falciparum (Pf) sporozoite behaviour in human skin, we devised a labelling technology (Cy5M2, targeting the sporozoite mitochondrion) that supports tracking of individual non-GMO sporozoites in human skin. Methods: Sporozoite labelling with Cy5M2 was performed in vitro as well as via the feed of infected Anopheles mosquitos. Labelling was validated using confocal microscopy and flow cytometry and the fitness of labelled sporozoites was determined by analysis of infectivity to human hepatocytes in vitro, and in vivo in a rodent infection model. Using confocal video microscopy and custom software, single-sporozoite tracking studies in human skin-explants were performed. Results: Both in vitro and in mosquito labelling strategies yielded brightly fluorescent sporozoites of three different Plasmodium species. Cy5M2 uptake colocalized with MitoTracker® green and could be blocked using the known Translocator protein (TSPO)-inhibitor PK11195. This method supported the visualization and subsequent quantitative analysis of the migration patterns of individual non-GMO Pf sporozoites in human skin and did not affect the fitness of sporozoites. Conclusions: The ability to label and image non-GMO Plasmodium sporozoites provides the basis for detailed studies on the human skin stage of malaria with potential for in vivo translation. As such, it is an important tool for development of vaccines based on attenuated sporozoites and their route of administration.
Asunto(s)
Carbocianinas/metabolismo , Colorantes Fluorescentes/metabolismo , Malaria Falciparum/parasitología , Plasmodium falciparum/crecimiento & desarrollo , Piel/parasitología , Coloración y Etiquetado/métodos , Animales , Modelos Animales de Enfermedad , Hepatocitos/parasitología , Humanos , Ratones , Microscopía Confocal , Microscopía por Video , Modelos Teóricos , Plasmodium berghei/crecimiento & desarrollo , Plasmodium yoelii/crecimiento & desarrollo , Esporozoítos/crecimiento & desarrolloRESUMEN
Given the number of global malaria cases and deaths, the need for a vaccine against Plasmodium falciparum (Pf) remains pressing. Administration of live, radiation-attenuated Pf sporozoites can fully protect malaria-naïve individuals. Despite the fact that motility of these attenuated parasites is key to their infectivity and ultimately protective efficacy, sporozoite motility in human tissue (e.g. skin) remains wholly uncharacterized to date. We show that the ability to quantitatively address the complexity of sporozoite motility in human tissue provides an additional tool in the development of attenuated sporozoite vaccines. We imaged Pf movement in the skin of its natural host and compared wild-type and radiation-attenuated GFP-expressing Pf sporozoites. Using custom image analysis software and human skin explants we were able to quantitatively study their key motility features. This head-to-head comparison revealed that radiation attenuation impaired the capacity of sporozoites to vary their movement angle, velocity and direction, promoting less refined movement patterns. Understanding and overcoming these changes in motility will contribute to the development of an efficacious attenuated parasite malaria vaccine.