Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
N Engl J Med ; 385(15): 1401-1406, 2021 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-34407341

RESUMEN

Emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern pose a challenge to the effectiveness of current vaccines. A vaccine that could prevent infection caused by known and future variants of concern as well as infection with pre-emergent sarbecoviruses (i.e., those with potential to cause disease in humans in the future) would be ideal. Here we provide data showing that potent cross-clade pan-sarbecovirus neutralizing antibodies are induced in survivors of severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1) infection who have been immunized with the BNT162b2 messenger RNA (mRNA) vaccine. The antibodies are high-level and broad-spectrum, capable of neutralizing not only known variants of concern but also sarbecoviruses that have been identified in bats and pangolins and that have the potential to cause human infection. These findings show the feasibility of a pan-sarbecovirus vaccine strategy. (Funded by the Singapore National Research Foundation and National Medical Research Council.).


Asunto(s)
Anticuerpos Antivirales/sangre , Anticuerpos ampliamente neutralizantes/sangre , Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , SARS-CoV-2/inmunología , Síndrome Respiratorio Agudo Grave/inmunología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/inmunología , Linfocitos B , Vacuna BNT162 , Humanos , Inmunogenicidad Vacunal , Filogenia , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/genética , SARS-CoV-2/genética , Sobrevivientes
2.
Clin Infect Dis ; 75(12): 2088-2096, 2022 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-35543372

RESUMEN

BACKGROUND: Waning antibody levels post-vaccination and the emergence of variants of concern (VOCs) capable of evading protective immunity have raised the need for booster vaccinations. However, which combination of coronavirus disease 2019 (COVID-19) vaccines offers the strongest immune response against the Omicron variant is unknown. METHODS: This randomized, participant-blinded, controlled trial assessed the reactogenicity and immunogenicity of different COVID-19 vaccine booster combinations. A total of 100 BNT162b2-vaccinated individuals were enrolled and randomized 1:1 to either homologous (BNT162b2 + BNT162b2 + BNT162b2; "BBB") or heterologous messenger RNA (mRNA) (BNT162b2 + BNT162b2 + mRNA-1273; "BBM") booster vaccine. The primary end point was the level of neutralizing antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) wild-type and VOCs at day 28. RESULTS: A total of 51 participants were allocated to BBB and 49 to BBM; 50 and 48, respectively, were analyzed for safety and immunogenicity outcomes. At day 28 post-boost, mean SARS-CoV-2 spike antibody titers were lower with BBB (22 382 IU/mL; 95% confidence interval [CI], 18 210 to 27 517) vs BBM (29 751 IU/mL; 95% CI, 25 281 to 35 011; P = .034) as was the median level of neutralizing antibodies: BBB 99.0% (interquartile range [IQR], 97.9% to 99.3%) vs BBM 99.3% (IQR, 98.8% to 99.5%; P = .021). On subgroup analysis, significant higher mean spike antibody titer, median surrogate neutralizing antibody level against all VOCs, and live Omicron neutralization titer were observed only in older adults receiving BBM. Both vaccines were well tolerated. CONCLUSIONS: Heterologous mRNA-1273 booster vaccination compared with homologous BNT123b2 induced a stronger neutralizing response against the Omicron variant in older individuals. CLINICAL TRIALS REGISTRATION: NCT05142319.


Asunto(s)
Vacuna BNT162 , COVID-19 , Humanos , Anciano , SARS-CoV-2 , Formación de Anticuerpos , Vacuna nCoV-2019 mRNA-1273 , Vacunación , Anticuerpos Neutralizantes , Anticuerpos Antivirales
3.
Cell Rep ; 43(9): 114703, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39213154

RESUMEN

Among their many unique biological features, bats are increasingly recognized as a key reservoir of many emerging viruses that cause massive morbidity and mortality in humans. Bats are capable of harboring many of these deadly viruses without any apparent signs of pathology, in a mechanism known as viral disease tolerance. However, the immunological mechanisms behind viral tolerance remain poorly understood. As a non-model organism species, there are very limited research resources and tools available to study bat immunology. In the cave nectar bat Eonycteris spelaea, we have a panel of monoclonal antibodies (mAbs) against major immune markers. An immunophenotyping survey of major immune compartments and barrier sites using these mAbs reveals differences in the immunological landscape of bats.

4.
EBioMedicine ; 107: 105275, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39137572

RESUMEN

BACKGROUND: Understanding how SARS-CoV-2 breakthrough infections impacts the breadth of immune responses against existing and pre-emergent SARS-CoV-2 strains is needed to develop an evidence-based long-term immunisation strategy. METHODS: We performed a randomised, controlled trial to assess the immunogenicity of homologous (BNT162b2) versus heterologous (mRNA-1273) booster vaccination in 100 BNT162b2-vaccinated infection-naïve individuals enrolled from October 2021. Post hoc analysis was performed to assess the impact of SARS-CoV-2 infection on humoral and cellular immune responses against wild-type SARS-CoV-2 and/or Omicron subvariants. FINDINGS: 93 participants completed the study at day 360. 71% (66/93) of participants reported first SARS-CoV-2 Omicron infection by the end of the study with similar proportions of infections between homologous and heterologous booster groups (72.3% [34/47] vs 69.6% [32/46]; p = 0.82). Mean wildtype SARS-CoV-2 anti-S-RBD antibody level was significantly higher in heterologous booster group compared with homologous group at day 180 (14,588 IU/mL; 95% CI, 10,186-20,893 vs 7447 IU/mL; 4646-11,912; p = 0.025). Participants who experienced breakthrough infections during the Omicron BA.1/2 wave had significantly higher anti-S-RBD antibody levels against wildtype SARS-CoV-2 and antibody neutralisation against BA.1 and pre-emergent BA.5 compared with infection-naïve participants. Regardless of hybrid immunity status, wildtype SARS-CoV-2 anti-S-RBD antibody level declined significantly after six months post-booster or post-SARS-CoV-2 infection. INTERPRETATION: Booster vaccination with mRNA-1273 was associated with significantly higher antibody levels compared with BNT162b2. Antibody responses are narrower and decline faster among uninfected, vaccinated individuals. Boosters may be more effective if administered shortly before infection outbreaks and at least six months after last infection or booster. FUNDING: Singapore NMRC, USFDA, MRC.

5.
ACS Chem Biol ; 16(11): 2348-2372, 2021 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-34609851

RESUMEN

The search for new antimalarial drugs with unexplored mechanisms of action is currently one of the main objectives to combat the resistance already in the clinic. New drugs should target specific mechanisms that once initiated lead inevitably to the parasite's death and clearance and cause minimal toxicity to the host. One such new mode of action recently characterized is to target the parasite's calcium dynamics. Disruption of the calcium homeostasis is associated with compromised digestive vacuole membrane integrity and release of its contents, leading to programmed cell death-like features characterized by loss of mitochondrial membrane potential and DNA degradation. Intriguingly, chloroquine (CQ)-treated parasites were previously reported to exhibit such cellular features. Using a high-throughput phenotypic screen, we identified 158 physiological disruptors (hits) of parasite calcium distribution from a small subset of approximately 3000 compounds selected from the GSK TCAMS (Tres Cantos Anti-Malarial Set) compound library. These compounds were then extensively profiled for biological activity against various CQ- and artemisinin-resistant Plasmodium falciparum strains and stages. The hits were also examined for cytotoxicity, speed of antimalarial activity, and their possible inhibitory effects on heme crystallization. Overall, we identified three compounds, TCMDC-136230, -125431, and -125457, which were potent in inducing calcium redistribution but minimally inhibited heme crystallization. Molecular superimposition of the molecules by computational methods identified a common pharmacophore, with the best fit assigned to TCMDC-125457. There were low cytotoxicity or CQ cross-resistance issues for these three compounds. IC50 values of these three compounds were in the low micromolar range. In addition, TCMDC-125457 demonstrated high efficacy when pulsed in a single-dose combination with artesunate against tightly synchronized artemisinin-resistant ring-stage parasites. These results should add new drug options to the current armament of antimalarial drugs as well as provide promising starting points for development of drugs with non-classical modes of action.


Asunto(s)
Antimaláricos/farmacología , Calcio/metabolismo , Ensayos Analíticos de Alto Rendimiento/métodos , Homeostasis/efectos de los fármacos , Plasmodium falciparum/efectos de los fármacos , Antimaláricos/química , Benzofuranos/química , Citosol/metabolismo , ADN/metabolismo , Imidazoles/química , Mitocondrias/metabolismo , Plasmodium falciparum/metabolismo , Relación Estructura-Actividad
6.
JAMA Pediatr ; 176(11): 1142-1143, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36036929

RESUMEN

This cohort study assesses the presence of neutralizing antibodies in the serum samples of children in different age groups during and after SARS-CoV-2 infection.


Asunto(s)
Anticuerpos Neutralizantes , COVID-19 , Niño , Adolescente , Humanos , Anticuerpos Neutralizantes/inmunología , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Anticuerpos Antivirales , Inmunidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA