Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
NMR Biomed ; 33(4): e4210, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31926122

RESUMEN

Conventional diffusion-weighted (DW) MRI suffers from free water contamination due to the finite voxel size. The most common case of free water contamination occurs with cerebrospinal fluid (CSF) in voxels located at the CSF-tissue interface, such as at the ventricles in the human brain. Another case refers to intra-tissue free water as in vasogenic oedema. In order to avoid the bias in diffusion metrics, several multi-compartment methods have been introduced, which explicitly model the presence of a free water compartment. However, fitting multi-compartment models in DW MRI represents a well known ill conditioned problem. Although during the last decade great effort has been devoted to mitigating this estimation problem, the research field remains active. The aim of this work is to introduce the design, characterise the NMR properties and demonstrate the use of two dedicated anisotropic diffusion fibre phantoms, useful for the study of free water elimination (FWE) and mapping models. In particular, we investigate the recently proposed FWE diffusion tensor imaging approach, which takes explicit account of differences in the transverse relaxation times between the free water and tissue compartments.


Asunto(s)
Mapeo Encefálico , Imagen de Difusión por Resonancia Magnética , Fantasmas de Imagen , Agua/química , Anisotropía , Humanos , Protones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA