Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Ecol Evol ; 11(23): 16434-16445, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34938447

RESUMEN

Trait and functional trait approaches have revolutionized ecology improving our understanding of community assembly, species coexistence, and biodiversity loss. Focusing on traits promotes comparability across spatial and organizational scales, but terms must be used consistently. While several papers have offered definitions, it remains unclear how ecologists operationalize "trait" and "functional trait" terms. Here, we evaluate how researchers and the published literatures use these terms and explore differences among subdisciplines and study systems (taxa and biome). By conducting both a survey and a literature review, we test the hypothesis that ecologists' working definition of "trait" is adapted or altered when confronting the realities of collecting, analyzing and presenting data. From 486 survey responses and 712 reviewed papers, we identified inconsistencies in the understanding and use of terminology among researchers, but also limited inclusion of definitions within the published literature. Discrepancies were not explained by subdiscipline, system of study, or respondent characteristics, suggesting there could be an inconsistent understanding even among those working in related topics. Consistencies among survey responses included the use of morphological, phonological, and physiological traits. Previous studies have called for unification of terminology; yet, our study shows that proposed definitions are not consistently used or accepted. Sources of disagreement include trait heritability, defining and interpreting function, and dealing with organisms in which individuals are not clearly recognizable. We discuss and offer guidelines for overcoming these disagreements. The diversity of life on Earth means traits can represent different features that can be measured and reported in different ways, and thus, narrow definitions that work for one system will fail in others. We recommend ecologists embrace the breadth of biodiversity using a simplified definition of "trait" more consistent with its common use. Trait-based approaches will be most powerful if we accept that traits are at least as diverse as trait ecologists.

2.
Biodivers Data J ; 8: e50775, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32210673

RESUMEN

BACKGROUND: In June 2019, an ecology field course of the University of Helsinki was held at Lammi Biological Station, Southern Finland. Within this course, the students familiarised themselves with field work and identification of spiders and explored the diversity of species in the area. Three sampling plots were chosen, one in grassland and two in boreal forest, to demonstrate the sampling techniques and, by applying a standardised protocol (COBRA), contribute to a global spider biodiversity project. NEW INFORMATION: The collected samples contained a total of 3445 spiders, of which 1956 (57%) were adult. Only adult spiders were accounted for in the inventory due to the impossibility of identification of juveniles. A total of 115 species belonging to 17 families were identified, of which the majority (58 species, 50%) were Linyphiidae. Lycosidae and Theridiidae both had 11 species (10%) and all the other families had seven or fewer species. Linyphiidae were also dominant in terms of adult individuals captured, with 756 (39%), followed by 705 (36%) Lycosidae. Other families with more than 100 individuals were Thomisidae (196, 10%) and Tetragnathidae (102, 5%). The most abundant species were the lycosids Pardosa fulvipes (362, 19%) and Pardosa riparia (290, 15%) and the linyphiid Neriene peltata (123, 6%).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA