Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nucleic Acids Res ; 47(5): 2609-2629, 2019 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-30605535

RESUMEN

In trypanosomes, in contrast to most eukaryotes, the large subunit (LSU) ribosomal RNA is fragmented into two large and four small ribosomal RNAs (srRNAs) pieces, and this additional processing likely requires trypanosome-specific factors. Here, we examined the role of 10 abundant small nucleolar RNAs (snoRNAs) involved in rRNA processing. We show that each snoRNA involved in LSU processing associates with factors engaged in either early or late biogenesis steps. Five of these snoRNAs interact with the intervening sequences of rRNA precursor, whereas the others only guide rRNA modifications. The function of the snoRNAs was explored by silencing snoRNAs. The data suggest that the LSU rRNA processing events do not correspond to the order of rRNA transcription, and that srRNAs 2, 4 and 6 which are part of LSU are processed before srRNA1. Interestingly, the 6 snoRNAs that affect srRNA1 processing guide modifications on rRNA positions that span locations from the protein exit tunnel to the srRNA1, suggesting that these modifications may serve as check-points preceding the liberation of srRNA1. This study identifies the highest number of snoRNAs so far described that are involved in rRNA processing and/or rRNA folding and highlights their function in the unique trypanosome rRNA maturation events.


Asunto(s)
Procesamiento Postranscripcional del ARN/genética , ARN Ribosómico/genética , ARN Nuclear Pequeño/genética , Trypanosoma brucei brucei/genética , Conformación de Ácido Nucleico , Precursores del ARN/genética , Transcripción Genética
2.
Nucleic Acids Res ; 47(14): 7633-7647, 2019 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-31147702

RESUMEN

The parasite Trypanosoma brucei, the causative agent of sleeping sickness, cycles between an insect and a mammalian host. Here, we investigated the presence of pseudouridines (Ψs) on the spliceosomal small nuclear RNAs (snRNAs), which may enable growth at the very different temperatures characterizing the two hosts. To this end, we performed the first high-throughput mapping of spliceosomal snRNA Ψs by small RNA Ψ-seq. The analysis revealed 42 Ψs on T. brucei snRNAs, which is the highest number reported so far. We show that a trypanosome protein analogous to human protein WDR79, is essential for guiding Ψ on snRNAs but not on rRNAs. snoRNA species implicated in snRNA pseudouridylation were identified by a genome-wide approach based on ligation of RNAs following in vivo UV cross-linking. snRNA Ψs are guided by single hairpin snoRNAs, also implicated in rRNA modification. Depletion of such guiding snoRNA by RNAi compromised the guided modification on snRNA and reduced parasite growth at elevated temperatures. We further demonstrate that Ψ strengthens U4/U6 RNA-RNA and U2B"/U2A' proteins-U2 snRNA interaction at elevated temperatures. The existence of single hairpin RNAs that modify both the spliceosome and ribosome RNAs is unique for these parasites, and may be related to their ability to cycle between their two hosts that differ in temperature.


Asunto(s)
Proteínas Protozoarias/metabolismo , Seudouridina/metabolismo , ARN Nuclear Pequeño/metabolismo , ARN Nucleolar Pequeño/metabolismo , Empalmosomas/metabolismo , Trypanosoma brucei brucei/metabolismo , Animales , Secuencia de Bases , Humanos , Unión Proteica , Proteínas Protozoarias/genética , Seudouridina/genética , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , ARN Nuclear Pequeño/genética , ARN Nucleolar Pequeño/genética , Ribonucleoproteínas Nucleares Pequeñas/genética , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Empalmosomas/genética , Trypanosoma brucei brucei/genética
3.
PLoS Pathog ; 13(3): e1006245, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28257521

RESUMEN

Extracellular vesicles (EV) secreted by pathogens function in a variety of biological processes. Here, we demonstrate that in the protozoan parasite Trypanosoma brucei, exosome secretion is induced by stress that affects trans-splicing. Following perturbations in biogenesis of spliced leader RNA, which donates its spliced leader (SL) exon to all mRNAs, or after heat-shock, the SL RNA is exported to the cytoplasm and forms distinct granules, which are then secreted by exosomes. The exosomes are formed in multivesicular bodies (MVB) utilizing the endosomal sorting complexes required for transport (ESCRT), through a mechanism similar to microRNA secretion in mammalian cells. Silencing of the ESCRT factor, Vps36, compromised exosome secretion but not the secretion of vesicles derived from nanotubes. The exosomes enter recipient trypanosome cells. Time-lapse microscopy demonstrated that cells secreting exosomes or purified intact exosomes affect social motility (SoMo). This study demonstrates that exosomes are delivered to trypanosome cells and can change their migration. Exosomes are used to transmit stress signals for communication between parasites.


Asunto(s)
Exosomas/metabolismo , Trypanosoma brucei brucei/metabolismo , Northern Blotting , Línea Celular , Procesamiento de Imagen Asistido por Computador , Hibridación Fluorescente in Situ , Microscopía Electrónica , Imagen de Lapso de Tiempo
4.
RNA Biol ; 11(6): 715-31, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24922194

RESUMEN

In trypanosomes, mRNAs are processed by trans-splicing; in this process, a common exon, the spliced leader, is added to all mRNAs from a small RNA donor, the spliced leader RNA (SL RNA). However, little is known regarding how this process is regulated. In this study we investigated the function of two serine-arginine-rich proteins, TSR1 and TSR1IP, implicated in trans-splicing in Trypanosoma brucei. Depletion of these factors by RNAi suggested their role in both cis- and trans-splicing. Microarray was used to examine the transcriptome of the silenced cells. The level of hundreds of mRNAs was changed, suggesting that these proteins have a role in regulating only a subset of T. brucei mRNAs. Mass-spectrometry analyses of complexes associated with these proteins suggest that these factors function in mRNA stability, translation, and rRNA processing. We further demonstrate changes in the stability of mRNA as a result of depletion of the two TSR proteins. In addition, rRNA defects were observed under the depletion of U2AF35, TSR1, and TSR1IP, but not SF1, suggesting involvement of SR proteins in rRNA processing.


Asunto(s)
Dominios y Motivos de Interacción de Proteínas , Proteínas Protozoarias/metabolismo , Empalme del ARN , Estabilidad del ARN , ARN Mensajero/genética , ARN Ribosómico/genética , Proteínas de Unión al ARN/metabolismo , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , Secuencias de Aminoácidos , Núcleo Celular/metabolismo , Análisis por Conglomerados , Perfilación de la Expresión Génica , Orden Génico , Silenciador del Gen , Sitios Genéticos , Espectrometría de Masas , Transporte de Proteínas , Proteínas Protozoarias/química , Señales de Poliadenilación de ARN 3' , ARN Mensajero/metabolismo , ARN Ribosómico/metabolismo , ARN Lider Empalmado/genética , ARN Lider Empalmado/metabolismo , Proteínas de Unión al ARN/química , Trans-Empalme , Transcripción Genética , Transcriptoma
5.
Viruses ; 14(8)2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-36016343

RESUMEN

The nucleolus is a subnuclear compartment whose primary function is the biogenesis of ribosomal subunits. Certain viral infections affect the morphology and composition of the nucleolar compartment and influence ribosomal RNA (rRNA) transcription and maturation. However, no description of nucleolar morphology and function during infection with Kaposi's sarcoma-associated herpesvirus (KSHV) is available to date. Using immunofluorescence microscopy, we documented extensive destruction of the nuclear and nucleolar architecture during the lytic reactivation of KSHV. This was manifested by the redistribution of key nucleolar proteins, including the rRNA transcription factor UBF. Distinct delocalization patterns were evident; certain nucleolar proteins remained together whereas others dissociated, implying that nucleolar proteins undergo nonrandom programmed dispersion. Significantly, the redistribution of UBF was dependent on viral DNA replication or late viral gene expression. No significant changes in pre-rRNA levels and no accumulation of pre-rRNA intermediates were found by RT-qPCR and Northern blot analysis. Furthermore, fluorescent in situ hybridization (FISH), combined with immunofluorescence, revealed an overlap between Fibrillarin and internal transcribed spacer 1 (ITS1), which represents the primary product of the pre-rRNA, suggesting that the processing of rRNA proceeds during lytic reactivation. Finally, small changes in the levels of pseudouridylation (Ψ) and 2'-O-methylation (Nm) were documented across the rRNA; however, none were localized to the functional domain. Taken together, our results suggest that despite dramatic changes in the nucleolar organization, rRNA transcription and processing persist during lytic reactivation of KSHV. Whether the observed nucleolar alterations favor productive infection or signify cellular anti-viral responses remains to be determined.


Asunto(s)
Herpesvirus Humano 8 , Sarcoma de Kaposi , Replicación del ADN , ADN Viral , Regulación Viral de la Expresión Génica , Herpesvirus Humano 8/genética , Humanos , Hibridación Fluorescente in Situ , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Precursores del ARN , Replicación Viral
6.
Front Microbiol ; 11: 1844, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32849441

RESUMEN

ATP-independent chaperones are widespread across all domains of life and serve as the first line of defense during protein unfolding stresses. One of the known crucial chaperones for bacterial survival in a hostile environment (e.g., heat and oxidative stress) is the highly conserved, redox-regulated ATP-independent bacterial chaperone Hsp33. Using a bioinformatic analysis, we describe novel eukaryotic homologs of Hsp33 identified in eukaryotic pathogens belonging to the kinetoplastids, a family responsible for lethal human diseases such as Chagas disease as caused by Trypanosoma cruzi, African sleeping sickness caused by Trypanosoma brucei spp., and leishmaniasis pathologies delivered by various Leishmania species. During their pathogenic life cycle, kinetoplastids need to cope with elevated temperatures and oxidative stress, the same conditions which convert Hsp33 into a powerful chaperone in bacteria, thus preventing aggregation of a wide range of misfolded proteins. Here, we focused on a functional characterization of the Hsp33 homolog in one of the members of the kinetoplastid family, T. brucei, (Tb927.6.2630), which we have named TrypOx. RNAi silencing of TrypOx led to a significant decrease in the survival of T. brucei under mild oxidative stress conditions, implying a protective role of TrypOx during the Trypanosomes growth. We then adopted a proteomics-driven approach to investigate the role of TrypOx in defining the oxidative stress response. Depletion of TrypOx significantly altered the abundance of proteins mediating redox homeostasis, linking TrypOx with the antioxidant system. Using biochemical approaches, we identified the redox-switch domain of TrypOx, showing its modularity and oxidation-dependent structural plasticity. Kinetoplastid parasites such as T. brucei need to cope with high levels of oxidants produced by the innate immune system, such that parasite-specific antioxidant proteins like TrypOx - which are depleted in mammals - are highly promising candidates for drug targeting.

7.
Trends Parasitol ; 35(10): 778-794, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31473096

RESUMEN

Trypanosomatids are protozoan parasites that cycle between an insect and a mammalian host. The large-subunit rRNA of these organisms undergoes unique processing events absent in other eukaryotes. Recently, small nucleolar RNAs (snoRNAs) that mediate these specific cleavages were identified. Trypanosomatid rRNA is rich in RNA modifications such as 2'-O-methylation (Nm) and pseudouridylation (Ψ) that are also guided by these snoRNAs. A subset of these modifications is developmentally regulated and increased in the parasite form that propagates in the mammalian host. Such hypermodification contributes the temperature adaptation and hence infectivity during cycling of the parasite. rRNA processing and modification should be considered promising drug targets for fighting the diseases caused by these parasites.


Asunto(s)
ARN Protozoario/biosíntesis , Trypanosomatina/fisiología , Sistemas de Liberación de Medicamentos , Infecciones por Euglenozoos/tratamiento farmacológico , Infecciones por Euglenozoos/parasitología , Humanos , Procesamiento Postranscripcional del ARN
8.
J Mol Biol ; 429(21): 3301-3318, 2017 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-28456523

RESUMEN

The parasite Trypanosoma brucei is the causative agent of African sleeping sickness and is known for its unique RNA processing mechanisms that are common to all the kinetoplastidea including Leishmania and Trypanosoma cruzi. Trypanosomes possess two canonical RNA poly (A) polymerases (PAPs) termed PAP1 and PAP2. PAP1 is encoded by one of the only two genes harboring cis-spliced introns in this organism, and its function is currently unknown. In trypanosomes, all mRNAs, and non-coding RNAs such as small nucleolar RNAs (snoRNAs) and long non-coding RNAs (lncRNAs), undergo trans-splicing and polyadenylation. Here, we show that the function of PAP1, which is located in the nucleus, is to polyadenylate non-coding RNAs, which undergo trans-splicing and polyadenylation. Major substrates of PAP1 are the snoRNAs and lncRNAs. Under the silencing of either PAP1 or PAP2, the level of snoRNAs is reduced. The dual polyadenylation of snoRNA intermediates is carried out by both PAP2 and PAP1 and requires the factors essential for the polyadenylation of mRNAs. The dual polyadenylation of the precursor snoRNAs by PAPs may function to recruit the machinery essential for snoRNA processing.


Asunto(s)
Poli A/genética , Poliadenilación/genética , Polinucleotido Adenililtransferasa/genética , ARN Mensajero/genética , ARN Nucleolar Pequeño/biosíntesis , ARN no Traducido/genética , Trypanosoma brucei brucei/enzimología , Secuencia de Aminoácidos , Proteínas Asociadas a Pancreatitis , Empalme del ARN , Alineación de Secuencia , Trypanosoma brucei brucei/genética
9.
Sci Rep ; 6: 25296, 2016 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-27142987

RESUMEN

The protozoan parasite Trypanosoma brucei, which causes devastating diseases in humans and animals in sub-Saharan Africa, undergoes a complex life cycle between the mammalian host and the blood-feeding tsetse fly vector. However, little is known about how the parasite performs most molecular functions in such different environments. Here, we provide evidence for the intriguing possibility that pseudouridylation of rRNA plays an important role in the capacity of the parasite to transit between the insect midgut and the mammalian bloodstream. Briefly, we mapped pseudouridines (Ψ) on rRNA by Ψ-seq in procyclic form (PCF) and bloodstream form (BSF) trypanosomes. We detected 68 Ψs on rRNA, which are guided by H/ACA small nucleolar RNAs (snoRNA). The small RNome of both life cycle stages was determined by HiSeq and 83 H/ACAs were identified. We observed an elevation of 21 Ψs modifications in BSF as a result of increased levels of the guiding snoRNAs. Overexpression of snoRNAs guiding modification on H69 provided a slight growth advantage to PCF parasites at 30 °C. Interestingly, these modifications are predicted to significantly alter the secondary structure of the large subunit (LSU) rRNA suggesting that hypermodified positions may contribute to the adaption of ribosome function during cycling between the two hosts.


Asunto(s)
Estadios del Ciclo de Vida , Seudouridina/metabolismo , ARN Ribosómico/metabolismo , Ribosomas/metabolismo , Trypanosoma brucei brucei/fisiología , Adaptación Fisiológica , Perfilación de la Expresión Génica , ARN Nucleolar Pequeño/química , Análisis de Secuencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA