Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Am Nat ; 203(6): 681-694, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38781530

RESUMEN

AbstractTrade-offs are central to life history theory and play a role in driving life history diversity. They arise from a finite amount of resources that need to be allocated among different functions by an organism. Yet covariation of demographic rates among individuals frequently do not reflect allocation trade-offs because of variation in resource acquisition. The covariation of traits among individuals can thus vary with the environment and often increases in benign environments. Surprisingly, little is known about how such context-dependent expression of trade-offs among individuals affect population dynamics across species with different life histories. To study their influence on population stability, we develop an individual-based simulation where covariation in demographic rates varies with the environment. We use it to simulate population dynamics for various life histories across the slow-fast pace-of-life continuum. We found that the population dynamics of slower life histories are relatively more sensitive to changes in covariation, regardless of the trade-off considered. Additionally, we found that the impact on population stability depends on which trade-off is considered, with opposite effects of intraindividual and intergenerational trade-offs. Last, the expression of different trade-offs can feed back to influence generation time through selection acting on individual heterogeneity within cohorts, ultimately affecting population dynamics.


Asunto(s)
Rasgos de la Historia de Vida , Dinámica Poblacional , Animales , Modelos Biológicos , Ambiente , Simulación por Computador
2.
Glob Chang Biol ; 30(1): e16981, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37888836

RESUMEN

Indigenous Peoples are long-term custodians of their lands, but only recently are their contributions to conservation starting to be recognized in biodiversity policy and practice. Tropical forest loss and degradation are lower in Indigenous lands than unprotected areas, yet the role of Indigenous Peoples' Lands (IPL) in biodiversity conservation has not been properly assessed from regional to global scales. Using species distribution ranges of 11,872 tropical forest-dependent vertebrates to create area of habitat maps, we identified the overlap of these species ranges with IPL and then compared values inside and outside of IPL for species richness, extinction vulnerability, and range-size rarity. Of assessed vertebrates, at least 76.8% had range overlaps with IPL, on average overlapping ~25% of their ranges; at least 120 species were found only within IPL. Species richness within IPL was highest in South America, while IPL in Southeast Asia had highest extinction vulnerability, and IPL in Dominica and New Caledonia were important for range-size rarity. Most countries in the Americas had higher species richness within IPL than outside, whereas most countries in Asia had lower extinction vulnerability scores inside IPL and more countries in Africa and Asia had slightly higher range-size rarity in IPL. Our findings suggest that IPL provide critical support for tropical forest-dependent vertebrates, highlighting the need for greater inclusion of Indigenous Peoples in conservation target-setting and program implementation, and stronger upholding of Indigenous Peoples' rights in conservation policy.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Humanos , Animales , Vertebrados , Biodiversidad , Pueblos Indígenas
3.
J Anim Ecol ; 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39221784

RESUMEN

Life history trade-offs are one of the central tenets of evolutionary demography. Trade-offs, depicting negative covariances between individuals' life history traits, can arise from genetic constraints, or from a finite amount of resources that each individual has to allocate in a zero-sum game between somatic and reproductive functions. While theory predicts that trade-offs are ubiquitous, empirical studies have often failed to detect such negative covariances in wild populations. One way to improve the detection of trade-offs is by accounting for the environmental context, as trade-off expression may depend on environmental conditions. However, current methodologies usually search for fixed covariances between traits, thereby ignoring their context dependence. Here, we present a hierarchical multivariate 'covariance reaction norm' model, adapted from Martin (2023), to help detect context dependence in the expression of life-history trade-offs using demographic data. The method allows continuous variation in the phenotypic correlation between traits. We validate the model on simulated data for both intraindividual and intergenerational trade-offs. We then apply it to empirical datasets of yellow-bellied marmots (Marmota flaviventer) and Soay sheep (Ovis aries) as a proof-of-concept showing that new insights can be gained by applying our methodology, such as detecting trade-offs only in specific environments. We discuss its potential for application to many of the existing long-term demographic datasets and how it could improve our understanding of trade-off expression in particular, and life history theory in general.

4.
Proc Natl Acad Sci U S A ; 117(29): 17068-17073, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32631995

RESUMEN

Biotic interactions are central to both ecological and evolutionary dynamics. In the vast majority of empirical studies, the strength of intraspecific interactions is estimated by using simple measures of population size. Biologists have long known that these are crude metrics, with experiments and theory suggesting that interactions between individuals should depend on traits, such as body size. Despite this, it has been difficult to estimate the impact of traits on competitive ability from ecological field data, and this explains why the strength of biotic interactions has empirically been treated in a simplistic manner. Using long-term observational data from four different populations, we show that large Trinidadian guppies impose a significantly larger competitive pressure on conspecifics than individuals that are smaller; in other words, competition is asymmetric. When we incorporate this asymmetry into integral projection models, the predicted size structure is much closer to what we see in the field compared with models where competition is independent of body size. This difference in size structure translates into a twofold difference in reproductive output. This demonstrates how the nature of ecological interactions drives the size structure, which, in turn, will have important implications for both the ecological and evolutionary dynamics.


Asunto(s)
Evolución Biológica , Ecosistema , Densidad de Población , Dinámica Poblacional , Animales , Tamaño Corporal/fisiología , Femenino , Masculino , Modelos Biológicos , Poecilia/fisiología
5.
Proc Natl Acad Sci U S A ; 117(30): 18119-18126, 2020 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-32631981

RESUMEN

Seasonal environmental conditions shape the behavior and life history of virtually all organisms. Climate change is modifying these seasonal environmental conditions, which threatens to disrupt population dynamics. It is conceivable that climatic changes may be beneficial in one season but result in detrimental conditions in another because life-history strategies vary between these time periods. We analyzed the temporal trends in seasonal survival of yellow-bellied marmots (Marmota flaviventer) and explored the environmental drivers using a 40-y dataset from the Colorado Rocky Mountains (USA). Trends in survival revealed divergent seasonal patterns, which were similar across age-classes. Marmot survival declined during winter but generally increased during summer. Interestingly, different environmental factors appeared to drive survival trends across age-classes. Winter survival was largely driven by conditions during the preceding summer and the effect of continued climate change was likely to be mainly negative, whereas the likely outcome of continued climate change on summer survival was generally positive. This study illustrates that seasonal demographic responses need disentangling to accurately forecast the impacts of climate change on animal population dynamics.


Asunto(s)
Cambio Climático , Hibernación , Mamíferos , Estaciones del Año , Animales , Demografía , Ambiente , Mortalidad , Dinámica Poblacional
6.
Proc Natl Acad Sci U S A ; 117(8): 4218-4227, 2020 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-32034102

RESUMEN

When plants establish outside their native range, their ability to adapt to the new environment is influenced by both demography and dispersal. However, the relative importance of these two factors is poorly understood. To quantify the influence of demography and dispersal on patterns of genetic diversity underlying adaptation, we used data from a globally distributed demographic research network comprising 35 native and 18 nonnative populations of Plantago lanceolata Species-specific simulation experiments showed that dispersal would dilute demographic influences on genetic diversity at local scales. Populations in the native European range had strong spatial genetic structure associated with geographic distance and precipitation seasonality. In contrast, nonnative populations had weaker spatial genetic structure that was not associated with environmental gradients but with higher within-population genetic diversity. Our findings show that dispersal caused by repeated, long-distance, human-mediated introductions has allowed invasive plant populations to overcome environmental constraints on genetic diversity, even without strong demographic changes. The impact of invasive plants may, therefore, increase with repeated introductions, highlighting the need to constrain future introductions of species even if they already exist in an area.


Asunto(s)
Flujo Génico , Variación Genética , Plantago/genética , Demografía , Especies Introducidas , Filogenia , Plantago/química
7.
J Anim Ecol ; 91(1): 224-240, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34704272

RESUMEN

The social environment in which individuals live affects their fitness and in turn population dynamics as a whole. Birds with facultative cooperative breeding can live in social groups with dominants, subordinate helpers that assist with the breeding of others, and subordinate non-helpers. Helping behaviour benefits dominants through increased reproductive rates and reduced extrinsic mortality, such that cooperative breeding might have evolved in response to unpredictable, harsh conditions affecting reproduction and/or survival of the dominants. Additionally, there may be different costs and benefits to both helpers and non-helpers, depending on the time-scale. For example, early-life costs might be compensated by later-life benefits. These differential effects are rarely analysed in the same study. We examined whether helping behaviour affects population persistence in a stochastic environment and whether there are direct fitness consequences of different life-history tactics adopted by helpers and non-helpers. We parameterised a matrix population model describing the population dynamics of female Seychelles warblers Acrocephalus sechellensis, birds that display facultative cooperative breeding. The stochastic density-dependent model is defined by a (st)age structure that includes life-history differences between helpers and non-helpers and thus can estimate the demographic mechanisms of direct benefits of helping behaviour. We found that population dynamics are strongly influenced by stochastic variation in the reproductive rates of the dominants, that helping behaviour promotes population persistence and that there are only early-life differences in the direct fitness of helpers and non-helpers. Through a matrix population model, we captured multiple demographic rates simultaneously and analysed their relative importance in determining population dynamics of these cooperative breeders. Disentangling early-life versus lifetime effects of individual tactics sheds new light on the costs and benefits of helping behaviour. For example, the finding that helpers and non-helpers have similar lifetime reproductive outputs and that differences in reproductive values between the two life-history tactics arise only in early life suggests that overall, helpers and non-helpers have a similar balance of costs and benefits when analysing direct benefits. We recommend analysing the consequence of different life-history tactics, during both early life and over the lifetime, as analyses of these different time frames may produce conflicting results.


Asunto(s)
Conducta Cooperativa , Passeriformes , Animales , Femenino , Conducta de Ayuda , Passeriformes/fisiología , Dinámica Poblacional , Reproducción/fisiología
8.
Parasitology ; 149(13): 1749-1759, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36052517

RESUMEN

Monitoring the prevalence and abundance of parasites over time is important for addressing their potential impact on host life histories, immunological profiles and their influence as a selective force. Only long-term ecological studies have the potential to shed light on both the temporal trends in infection prevalence and abundance and the drivers of such trends, because of their ability to dissect drivers that may be confounded over shorter time scales. Despite this, only a relatively small number of such studies exist. Here, we analysed changes in the prevalence and abundance of gastrointestinal parasites in the wild Soay sheep population of St. Kilda across 31 years. The host population density (PD) has increased across the study, and PD is known to increase parasite transmission, but we found that PD and year explained temporal variation in parasite prevalence and abundance independently. Prevalence of both strongyle nematodes and coccidian microparasites increased during the study, and this effect varied between lambs, yearlings and adults. Meanwhile, abundance of strongyles was more strongly linked to host PD than to temporal (yearly) dynamics, while abundance of coccidia showed a strong temporal trend without any influence of PD. Strikingly, coccidian abundance increased 3-fold across the course of the study in lambs, while increases in yearlings and adults were negligible. Our decades-long, intensive, individual-based study will enable the role of environmental change and selection pressures in driving these dynamics to be determined, potentially providing unparalleled insight into the drivers of temporal variation in parasite dynamics in the wild.


Asunto(s)
Coccidios , Enfermedades Transmisibles , Enfermedades Gastrointestinales , Parasitosis Intestinales , Nematodos , Parásitos , Ovinos , Animales , Parasitosis Intestinales/epidemiología , Parasitosis Intestinales/veterinaria , Parasitosis Intestinales/parasitología , Oveja Doméstica , Enfermedades Gastrointestinales/epidemiología , Enfermedades Gastrointestinales/veterinaria
9.
Ecol Lett ; 24(2): 227-238, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33184991

RESUMEN

Environmental change influences fitness-related traits and demographic rates, which in herbivores are often linked to resource-driven variation in body condition. Coupled body condition-demographic responses may therefore be important for herbivore population dynamics in fluctuating environments, such as the Arctic. We applied a transient Life-Table Response Experiment ('transient-LTRE') to demographic data from Svalbard barnacle geese (Branta leucopsis), to quantify their population-dynamic responses to changes in body mass. We partitioned contributions from direct and delayed demographic and body condition-mediated processes to variation in population growth. Declines in body condition (1980-2017), which positively affected reproduction and fledgling survival, had negligible consequences for population growth. Instead, population growth rates were largely reproduction-driven, in part through positive responses to rapidly advancing spring phenology. The virtual lack of body condition-mediated effects indicates that herbivore population dynamics may be more resilient to changing body condition than previously expected, with implications for their persistence under environmental change.


Asunto(s)
Herbivoria , Crecimiento Demográfico , Migración Animal , Animales , Regiones Árticas , Gansos , Dinámica Poblacional , Estaciones del Año , Svalbard
10.
Ecol Lett ; 24(11): 2378-2393, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34355467

RESUMEN

Genetic differentiation and phenotypic plasticity jointly shape intraspecific trait variation, but their roles differ among traits. In short-lived plants, reproductive traits may be more genetically determined due to their impact on fitness, whereas vegetative traits may show higher plasticity to buffer short-term perturbations. Combining a multi-treatment greenhouse experiment with observational field data throughout the range of a widespread short-lived herb, Plantago lanceolata, we (1) disentangled genetic and plastic responses of functional traits to a set of environmental drivers and (2) assessed how genetic differentiation and plasticity shape observational trait-environment relationships. Reproductive traits showed distinct genetic differentiation that largely determined observational patterns, but only when correcting traits for differences in biomass. Vegetative traits showed higher plasticity and opposite genetic and plastic responses, masking the genetic component underlying field-observed trait variation. Our study suggests that genetic differentiation may be inferred from observational data only for the traits most closely related to fitness.


Asunto(s)
Máscaras , Plantago , Adaptación Fisiológica , Biomasa , Fenotipo
11.
J Anim Ecol ; 90(6): 1398-1407, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33825186

RESUMEN

Approximately 25% of mammals are currently threatened with extinction, a risk that is amplified under climate change. Species persistence under climate change is determined by the combined effects of climatic factors on multiple demographic rates (survival, development and reproduction), and hence, population dynamics. Thus, to quantify which species and regions on Earth are most vulnerable to climate-driven extinction, a global understanding of how different demographic rates respond to climate is urgently needed. Here, we perform a systematic review of literature on demographic responses to climate, focusing on terrestrial mammals, for which extensive demographic data are available. To assess the full spectrum of responses, we synthesize information from studies that quantitatively link climate to multiple demographic rates. We find only 106 such studies, corresponding to 87 mammal species. These 87 species constitute <1% of all terrestrial mammals. Our synthesis reveals a strong mismatch between the locations of demographic studies and the regions and taxa currently recognized as most vulnerable to climate change. Surprisingly, for most mammals and regions sensitive to climate change, holistic demographic responses to climate remain unknown. At the same time, we reveal that filling this knowledge gap is critical as the effects of climate change will operate via complex demographic mechanisms: a vast majority of mammal populations display projected increases in some demographic rates but declines in others, often depending on the specific environmental context, complicating simple projections of population fates. Assessments of population viability under climate change are in critical need to gather data that account for multiple demographic responses, and coordinated actions to assess demography holistically should be prioritized for mammals and other taxa.


Asunto(s)
Cambio Climático , Mamíferos , Animales , Dinámica Poblacional
12.
Conserv Biol ; 35(4): 1210-1221, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33068013

RESUMEN

Phylogenetically informed imputation methods have rarely been applied to estimate missing values in demographic data but may be a powerful tool for reconstructing vital rates of survival, maturation, and fecundity for species of conservation concern. Imputed vital rates could be used to parameterize demographic models to explore how populations respond when vital rates are perturbed. We used standardized vital rate estimates for 50 bird species to assess the use of phylogenetic imputation to fill gaps in demographic data. We calculated imputation accuracy for vital rates of focal species excluded from the data set either singly or in combination and with and without phylogeny, body mass, and life-history trait data. We used imputed vital rates to calculate demographic metrics, including generation time, to validate the use of imputation in demographic analyses. Covariance among vital rates and other trait data provided a strong basis to guide imputation of missing vital rates in birds, even in the absence of phylogenetic information. Mean NRMSE for null and phylogenetic models differed by <0.01 except when no vital rates were available or for vital rates with high phylogenetic signal (Pagel's λ > 0.8). In these cases, including body mass and life-history trait data compensated for lack of phylogenetic information: mean normalized root mean square error (NRMSE) for null and phylogenetic models differed by <0.01 for adult survival and <0.04 for maturation rate. Estimates of demographic metrics were sensitive to the accuracy of imputed vital rates. For example, mean error in generation time doubled in response to inaccurate estimates of maturation time. Accurate demographic data and metrics, such as generation time, are needed to inform conservation planning processes, for example through International Union for Conservation of Nature Red List assessments and population viability analysis. Imputed vital rates could be useful in this context but, as for any estimated model parameters, awareness of the sensitivities of demographic model outputs to the imputed vital rates is essential.


Cerrando Brechas en los Análisis Demográficos con Imputación Filogenética Resumen Los métodos de imputación guiados filogenéticamente se han aplicado con poca frecuencia para estimar los valores faltantes en los datos demográficos, aunque pueden ser una herramienta poderosa para la reconstrucción de tasas vitales de supervivencia, maduración y fecundidad de especies de importancia para la conservación. Las tasas vitales imputadas podrían usarse para generar parámetros en los modelos demográficos para explorar cómo responden las poblaciones cuando se perturban las tasas vitales. Utilizamos estimaciones de tasas vitales estandarizadas para 50 especies de aves para analizar el uso de la imputación filogenética para llenar los vacíos en los datos demográficos. Calculamos la certeza de imputación para las tasas vitales de las especies focales excluidas del conjunto de datos por sí solas o en combinación y con y sin datos de filogenia, masa corporal y características de historia de vida. Usamos las tasas vitales imputadas para calcular las medidas demográficas, incluyendo el tiempo de generación, y así validar el uso de la imputación en los análisis demográficos. La covarianza entre las tasas vitales y otros datos de características proporcionó una base sólida para orientar la imputación de tasas vitales faltantes en las aves, incluso la ausencia de información filogenética. El NRMSE medio para los modelos nulo y filogenético difirió por <0.01 salvo cuando no hubo tasas vitales disponibles o para tasas vitales con una señal filogenética alta (λ de Pagel > 0.8). En estos casos, la inclusión de la masa corporal y las características de historia de vida compensó la falta de información filogenética: el error cuadrático medio de la raíz normalizada media (NRMSE) para los modelos nulo y filogenéticos difirió por <0.01 para la supervivencia adulta y <0.04 para la tasa de maduración. Las estimaciones de las medidas demográficas fueron sensibles a la certeza de las tasas vitales imputadas. Por ejemplo, el error medio en el tiempo generacional se duplicó en respuesta a las estimaciones imprecisas del tiempo de maduración. Las medidas y datos demográficos certeros, como el tiempo generacional, son necesarios para orientar los procesos de planeación de la conservación; por ejemplo, a través de las valoraciones de la Lista Roja de la Unión Internacional para la Conservación de la Naturaleza y los análisis de viabilidad poblacional. Las tasas vitales imputadas podrían ser útiles en este contexto, pero como para cualquier tipo de parámetro de modelo estimado, el conocimiento de las sensibilidades del rendimiento del modelo demográfico es esencial para las tasas vitales imputadas.


Asunto(s)
Aves , Conservación de los Recursos Naturales , Animales , Demografía , Fertilidad , Filogenia
13.
Ecol Lett ; 23(4): 588-597, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31970918

RESUMEN

Natural populations are exposed to seasonal variation in environmental factors that simultaneously affect several demographic rates (survival, development and reproduction). The resulting covariation in these rates determines population dynamics, but accounting for its numerous biotic and abiotic drivers is a significant challenge. Here, we use a factor-analytic approach to capture partially unobserved drivers of seasonal population dynamics. We use 40 years of individual-based demography from yellow-bellied marmots (Marmota flaviventer) to fit and project population models that account for seasonal demographic covariation using a latent variable. We show that this latent variable, by producing positive covariation among winter demographic rates, depicts a measure of environmental quality. Simultaneously, negative responses of winter survival and reproductive-status change to declining environmental quality result in a higher risk of population quasi-extinction, regardless of summer demography where recruitment takes place. We demonstrate how complex environmental processes can be summarized to understand population persistence in seasonal environments.


Asunto(s)
Clima , Marmota , Animales , Demografía , Dinámica Poblacional , Estaciones del Año
14.
J Anim Ecol ; 89(10): 2268-2278, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32592591

RESUMEN

A changing environment directly influences birth and mortality rates, and thus population growth rates. However, population growth rates in the short term are also influenced by population age-structure. Despite its importance, the contribution of age-structure to population growth rates has rarely been explored empirically in wildlife populations with long-term demographic data. Here we assessed how changes in age-structure influenced short-term population dynamics in a semi-captive population of Asian elephants Elephas maximus. We addressed this question using a demographic dataset of female Asian elephants from timber camps in Myanmar spanning 45 years (1970-2014). First, we explored temporal variation in age-structure. Then, using annual matrix population models, we used a retrospective approach to assess the contributions of age-structure and vital rates to short-term population growth rates with respect to the average environment. Age-structure was highly variable over the study period, with large proportions of juveniles in the years 1970 and 1985, and made a substantial contribution to annual population growth rate deviations. High adult birth rates between 1970 and 1980 would have resulted in large positive population growth rates, but these were prevented by a low proportion of reproductive-aged females. We highlight that an understanding of both age-specific vital rates and age-structure is needed to assess short-term population dynamics. Furthermore, this example from a human-managed system suggests that the importance of age-structure may be accentuated in populations experiencing human disturbance where age-structure is unstable, such as those in captivity or for endangered species. Ultimately, changes to the environment drive population dynamics by influencing birth and mortality rates, but understanding demographic structure is crucial for assessing population growth.


Asunto(s)
Elefantes , Crecimiento Demográfico , Animales , Especies en Peligro de Extinción , Femenino , Dinámica Poblacional , Embarazo , Estudios Retrospectivos
15.
Proc Biol Sci ; 286(1899): 20182810, 2019 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-30900534

RESUMEN

Maintaining sustainable populations in captivity without supplementation through wild-capture is a major challenge in conservation that zoos and aquaria are working towards. However, the capture of wild animals continues for many purposes where conservation is not the primary focus. Wild-capture hinders long-term conservation goals by reducing remaining wild populations, but the direct and long-term indirect consequences of wild-capture for captive population viability are rarely addressed using longitudinal data. We explored the implications of changes in wild-capture on population dynamics in captivity over 54 years using a multi-generational studbook of working Asian elephants ( Elephas maximus) from Myanmar, the largest remaining captive elephant population. Here we show that population growth and birth rates declined between 1960 and 2014 with declines in wild-capture. Importantly, wild-caught females had reduced birth rates and a higher mortality risk. However, despite the disadvantages of wild-capture, the population may not be sustainable without it, with immediate declines owing to an unstable age-structure that may last for 50 years. Our results highlight the need to assess the long-term demographic consequences of wild-capture to ensure the sustainability of captive and wild populations as species are increasingly managed and conserved in altered or novel environments.


Asunto(s)
Elefantes/fisiología , Animales , Animales de Zoológico/fisiología , Conservación de los Recursos Naturales , Femenino , Mianmar , Dinámica Poblacional
16.
Glob Chang Biol ; 25(10): 3282-3293, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31237387

RESUMEN

Predicting how species will be affected by future climatic change requires the underlying environmental drivers to be identified. As vital rates vary over the lifecycle, structured population models derived from statistical environment-demography relationships are often used to inform such predictions. Environmental drivers are typically identified independently for different vital rates and demographic classes. However, these rates often exhibit positive temporal covariance, suggesting that vital rates respond to common environmental drivers. Additionally, models often only incorporate average weather conditions during a single, a priori chosen time window (e.g. monthly means). Mismatches between these windows and the period when the vital rates are sensitive to variation in climate decrease the predictive performance of such approaches. We used a demographic structural equation model (SEM) to demonstrate that a single axis of environmental variation drives the majority of the (co)variation in survival, reproduction, and twinning across six age-sex classes in a Soay sheep population. This axis provides a simple target for the complex task of identifying the drivers of vital rate variation. We used functional linear models (FLMs) to determine the critical windows of three local climatic drivers, allowing the magnitude and direction of the climate effects to differ over time. Previously unidentified lagged climatic effects were detected in this well-studied population. The FLMs had a better predictive performance than selecting a critical window a priori, but not than a large-scale climate index. Positive covariance amongst vital rates and temporal variation in the effects of environmental drivers are common, suggesting our SEM-FLM approach is a widely applicable tool for exploring the joint responses of vital rates to environmental change.


Asunto(s)
Cambio Climático , Tiempo (Meteorología) , Animales , Demografía , Estadios del Ciclo de Vida , Dinámica Poblacional , Ovinos
17.
Ecol Lett ; 21(11): 1693-1703, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30252195

RESUMEN

Temporal variation in environmental conditions affects population growth directly via its impact on vital rates, and indirectly through induced variation in demographic structure and phenotypic trait distributions. We currently know very little about how these processes jointly mediate population responses to their environment. To address this gap, we develop a general transient life table response experiment (LTRE) which partitions the contributions to population growth arising from variation in (1) survival and reproduction, (2) demographic structure, (3) trait values and (4) climatic drivers. We apply the LTRE to a population of yellow-bellied marmots (Marmota flaviventer) to demonstrate the impact of demographic and trait-mediated processes. Our analysis provides a new perspective on demographic buffering, which may be a more subtle phenomena than is currently assumed. The new LTRE framework presents opportunities to improve our understanding of how trait variation influences population dynamics and adaptation in stochastic environments.


Asunto(s)
Marmota , Crecimiento Demográfico , Animales , Demografía , Tablas de Vida , Fenotipo , Dinámica Poblacional
18.
J Theor Biol ; 445: 120-127, 2018 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-29474856

RESUMEN

Many organisms face a wide variety of biotic and abiotic stressors which reduce individual survival, interacting to further reduce fitness. Here we studied the effects of two such interacting stressors: immunotoxicant exposure and parasite infection. We model the dynamics of a within-host infection and the associated immune response of an individual. We consider both the indirect sub-lethal effects on immunosuppression and the direct effects on health and mortality of individuals exposed to toxicants. We demonstrate that sub-lethal exposure to toxicants can promote infection through the suppression of the immune system. This happens through the depletion of the immune response which causes rapid proliferation in parasite load. We predict that the within-host parasite density is maximised by an intermediate toxicant exposure, rather than continuing to increase with toxicant exposure. In addition, high toxicant exposure can alter cellular regulation and cause the breakdown of normal healthy tissue, from which we infer higher mortality risk of the host. We classify this breakdown into three phases of increasing toxicant stress, and demonstrate the range of conditions under which toxicant exposure causes failure at the within-host level. These phases are determined by the relationship between the immunity status, overall cellular health and the level of toxicant exposure. We discuss the implications of our model in the context of individual bee health. Our model provides an assessment of how pesticide stress and infection interact to cause the breakdown of the within-host dynamics of individual bees.


Asunto(s)
Abejas/parasitología , Interacciones Huésped-Parásitos/efectos de los fármacos , Modelos Biológicos , Plaguicidas/efectos adversos , Estrés Fisiológico/efectos de los fármacos , Animales , Plaguicidas/farmacología
19.
J Theor Biol ; 420: 213-219, 2017 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-28288794

RESUMEN

The recent rapid decline in global honey bee populations could have significant implications for ecological systems, economics and food security. No single cause of honey bee collapse has yet to be identified, although pesticides, mites and other pathogens have all been shown to have a sublethal effect. We present a model of a functioning bee hive and introduce external stress to investigate the impact on the regulatory processes of recruitment to the forager class, social inhibition and the laying rate of the queen. The model predicts that constant density-dependent stress acting through an Allee effect on the hive can result in sudden catastrophic switches in dynamical behaviour and the eventual collapse of the hive. The model proposes that around a critical point the hive undergoes a saddle-node bifurcation, and that a small increase in model parameters can have irreversible consequences for the entire hive. We predict that increased stress levels can be counteracted by a higher laying rate of the queen, lower levels of forager recruitment or lower levels of natural mortality of foragers, and that increasing social inhibition can not maintain the colony under high levels of stress. We lay the theoretical foundation for sudden honey bee collapse in order to facilitate further experimental and theoretical consideration.


Asunto(s)
Abejas/fisiología , Colapso de Colonias , Modelos Biológicos , Estrés Fisiológico , Animales , Conducta Animal , Plaguicidas/efectos adversos , Reproducción
20.
Ecol Lett ; 19(3): 268-78, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26843397

RESUMEN

The effects of asymmetric interactions on population dynamics has been widely investigated, but there has been little work aimed at understanding how life history parameters like generation time, life expectancy and the variance in lifetime reproductive success are impacted by different types of competition. We develop a new framework for incorporating trait-mediated density-dependence into size-structured models and use Trinidadian guppies to show how different types of competitive interactions impact life history parameters. Our results show the degree of symmetry in competitive interactions can have dramatic effects on the speed of the life history. For some vital rates, shifting the competitive superiority from small to large individuals resulted in a doubling of the generation time. Such large influences of competitive symmetry on the timescale of demographic processes, and hence evolution, highlights the interwoven nature of ecological and evolutionary processes and the importance of density-dependence in understanding eco-evolutionary dynamics.


Asunto(s)
Conducta Competitiva , Poecilia/fisiología , Animales , Femenino , Modelos Biológicos , Dinámica Poblacional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA