Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Hum Mol Genet ; 29(21): 3516-3531, 2021 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-33105479

RESUMEN

Neurodevelopmental disorder with microcephaly, hypotonia and variable brain anomalies (NMIHBA) is an autosomal recessive neurodevelopmental and neurodegenerative disorder characterized by global developmental delay and severe intellectual disability. Microcephaly, progressive cortical atrophy, cerebellar hypoplasia and delayed myelination are neurological hallmarks in affected individuals. NMIHBA is caused by biallelic variants in PRUNE1 encoding prune exopolyphosphatase 1. We provide in-depth clinical description of two affected siblings harboring compound heterozygous variant alleles, c.383G > A (p.Arg128Gln), c.520G > T (p.Gly174*) in PRUNE1. To gain insights into disease biology, we biochemically characterized missense variants within the conserved N-terminal aspartic acid-histidine-histidine (DHH) motif and provide evidence that they result in the destabilization of protein structure and/or loss of exopolyphosphatase activity. Genetic ablation of Prune1 results in midgestational lethality in mice, associated with perturbations to embryonic growth and vascular development. Our findings suggest that NMIHBA results from hypomorphic variant alleles in humans and underscore the potential key role of PRUNE1 exopolyphoshatase activity in neurodevelopment.


Asunto(s)
Ácido Anhídrido Hidrolasas/deficiencia , Discapacidad Intelectual/patología , Microcefalia/patología , Hipotonía Muscular/patología , Mutación , Trastornos del Neurodesarrollo/patología , Monoéster Fosfórico Hidrolasas/genética , Alelos , Animales , Preescolar , Femenino , Humanos , Lactante , Discapacidad Intelectual/etiología , Discapacidad Intelectual/metabolismo , Masculino , Ratones , Microcefalia/etiología , Microcefalia/metabolismo , Hipotonía Muscular/etiología , Hipotonía Muscular/metabolismo , Trastornos del Neurodesarrollo/etiología , Trastornos del Neurodesarrollo/metabolismo , Linaje , Fenotipo
2.
J Cell Physiol ; 230(6): 1235-42, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25363829

RESUMEN

Osteolytic bone diseases are characterized by excessive osteoclast formation and activation. Protein kinase C (PKC)-dependent pathways regulate cell growth, differentiation and apoptosis in many cellular systems, and have been implicated in cancer development and osteoclast formation. A number of PKC inhibitors with anti-cancer properties have been developed, but whether they might also influence osteolysis (a common complication of bone invading cancers) is unclear. We studied the effects of the PKC inhibitor compound, GF109203X on osteoclast formation and activity, processes driven by receptor activator of NFκB ligand (RANKL). We found that GF109203X strongly and dose dependently suppresses osteoclastogenesis and osteoclast activity in RANKL-treated primary mouse bone marrow cells. Consistent with this GF109203X reduced expression of key osteoclastic genes, including cathepsin K, calcitonin receptor, tartrate resistant acid phosphatase (TRAP) and the proton pump subunit V-ATPase-d2 in RANKL-treated primary mouse bone marrow cells. Expression of these proteins is dependent upon RANKL-induced NF-κB and NFAT transcription factor actions; both were reduced in osteoclast progenitor populations by GF109203X treatment, notably NFATc1 levels. Furthermore, we showed that GF109203X inhibits RANKL-induced calcium oscillation. Together, this study shows GF109203X may block osteoclast functions, suggesting that pharmacological blockade of PKC-dependent pathways has therapeutic potential in osteolytic diseases.


Asunto(s)
Indoles/farmacología , Maleimidas/farmacología , FN-kappa B/metabolismo , Factores de Transcripción NFATC/metabolismo , Osteoclastos/efectos de los fármacos , Proteína Quinasa C/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Ligando RANK/metabolismo , Animales , Resorción Ósea/tratamiento farmacológico , Resorción Ósea/metabolismo , Diferenciación Celular/efectos de los fármacos , Línea Celular , Ratones , Osteoclastos/metabolismo , Proteína Quinasa C/metabolismo , Transducción de Señal/efectos de los fármacos
3.
J Cell Physiol ; 230(1): 82-94, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24909139

RESUMEN

Angiogenesis plays a pivotal role in bone formation, remodeling, and fracture healing. The regulation of angiogenesis in the bone microenvironment is highly complex and orchestrated by intercellular communication between bone cells and endothelial cells. Here, we report that EGF-like domain 7 (EGFL7), a member of the epidermal growth factor (EGF) repeat protein superfamily is expressed in both the osteoclast and osteoblast lineages, and promotes endothelial cell activities. Addition of exogenous recombinant EGFL7 potentiates SVEC (simian virus 40-transformed mouse microvascular endothelial cell line) cell migration and tube-like structure formation in vitro. Moreover, recombinant EGFL7 promotes angiogenesis featuring web-like structures in ex vivo fetal mouse metatarsal angiogenesis assay. We show that recombinant EGFL7 induces phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), signal transducer and activator of transcription 3 (STAT3), and focal adhesion kinase (FAK) in SVEC cells. Inhibition of ERK1/2 and STAT3 signaling impairs EGFL7-induced endothelial cell migration, and angiogenesis in fetal mouse metatarsal explants. Bioinformatic analyses indicate that EGFL7 contains a conserved RGD/QGD motif and EGFL7-induced endothelial cell migration is significantly reduced in the presence of RGD peptides. Moreover, EGFL7 gene expression is significantly upregulated during growth plate injury repair. Together, these results demonstrate that EGFL7 expressed by bone cells regulates endothelial cell activities through integrin-mediated signaling. This study highlights the important role that EGFL7, like EGFL6, expressed in bone microenvironment plays in the regulation of angiogenesis in bone.


Asunto(s)
Células Endoteliales/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Integrinas/metabolismo , Neovascularización Fisiológica/efectos de los fármacos , Proteínas/metabolismo , Factor de Transcripción STAT3/metabolismo , Animales , Huesos/irrigación sanguínea , Huesos/citología , Proteínas de Unión al Calcio , Movimiento Celular/efectos de los fármacos , Células Cultivadas , Familia de Proteínas EGF , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Curación de Fractura/fisiología , Placa de Crecimiento/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Osteoblastos/metabolismo , Osteocalcina/biosíntesis , Osteoclastos/metabolismo , Osteogénesis/fisiología , Fosforilación/efectos de los fármacos , Proteínas/farmacología , Ratas , Ratas Sprague-Dawley , Proteínas Recombinantes/farmacología , Factor de Transcripción STAT3/antagonistas & inhibidores , Fracturas de Salter-Harris , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/biosíntesis
4.
Nat Genet ; 55(7): 1138-1148, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37308787

RESUMEN

Human genetic studies of smoking behavior have been thus far largely limited to common variants. Studying rare coding variants has the potential to identify drug targets. We performed an exome-wide association study of smoking phenotypes in up to 749,459 individuals and discovered a protective association in CHRNB2, encoding the ß2 subunit of the α4ß2 nicotine acetylcholine receptor. Rare predicted loss-of-function and likely deleterious missense variants in CHRNB2 in aggregate were associated with a 35% decreased odds for smoking heavily (odds ratio (OR) = 0.65, confidence interval (CI) = 0.56-0.76, P = 1.9 × 10-8). An independent common variant association in the protective direction ( rs2072659 ; OR = 0.96; CI = 0.94-0.98; P = 5.3 × 10-6) was also evident, suggesting an allelic series. Our findings in humans align with decades-old experimental observations in mice that ß2 loss abolishes nicotine-mediated neuronal responses and attenuates nicotine self-administration. Our genetic discovery will inspire future drug designs targeting CHRNB2 in the brain for the treatment of nicotine addiction.


Asunto(s)
Nicotina , Tabaquismo , Humanos , Animales , Ratones , Fumar/genética , Tabaquismo/genética , Fenotipo , Oportunidad Relativa
5.
J Biol Chem ; 286(25): 22035-46, 2011 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-21531721

RESUMEN

Angiogenesis is required for bone development, growth, and repair. It is influenced by the local bone environment that involves cross-talks between endothelial cells and adjacent bone cells. However, data regarding factors that directly contribute to angiogenesis by bone cells remain poorly understood. Here, we report that EGFL6, a member of the epidermal growth factor (EGF) repeat superfamily proteins, induces angiogenesis by a paracrine mechanism in which EGFL6 is expressed in osteoblastic-like cells but promotes migration and angiogenesis of endothelial cells. Co-immunoprecipitation assays revealed that EGFL6 is secreted in culture medium as a homodimer protein. Using scratch wound healing and transwell assays, we found that conditioned medium containing EGFL6 potentiates SVEC (a simian virus 40-transformed mouse microvascular endothelial cell line) endothelial cell migration. In addition, EGFL6 promotes the endothelial cell tube-like structure formation in Matrigel assays and angiogenesis in a chick embryo chorioallantoic membrane. Furthermore, we show that EGFL6 recombinant protein induces phosphorylation of ERK in SVEC endothelial cells. Inhibition of ERK impaired EGFL6-induced ERK activation and endothelial cell migration. Together, these results demonstrate, for the first time, that osteoblastic-like cells express EGFL6 that is capable of promoting endothelial cell migration and angiogenesis via ERK activation. Thus, the EGLF6 mediates a paracrine mechanism of cross-talk between vascular endothelial cells and osteoblasts and might offer an important new target for the potential treatment of bone diseases, including osteonecrosis, osteoporosis, and fracture healing.


Asunto(s)
Movimiento Celular , Células Endoteliales/citología , Células Endoteliales/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Glicoproteínas/metabolismo , Proteínas de Neoplasias/metabolismo , Neovascularización Fisiológica , Péptidos/metabolismo , Animales , Huesos/irrigación sanguínea , Células COS , Proteínas de Unión al Calcio , Moléculas de Adhesión Celular , Línea Celular , Movimiento Celular/efectos de los fármacos , Embrión de Pollo , Chlorocebus aethiops , Membrana Corioalantoides/metabolismo , Células Endoteliales/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Glicoproteínas/química , Glicoproteínas/genética , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Neovascularización Fisiológica/efectos de los fármacos , Oligopéptidos/farmacología , Osteoblastos/citología , Osteoclastos/citología , Comunicación Paracrina/efectos de los fármacos , Péptidos/química , Péptidos/genética , Multimerización de Proteína/efectos de los fármacos , Estructura Cuaternaria de Proteína , ARN Mensajero/genética , ARN Mensajero/metabolismo
6.
J Cell Biochem ; 113(3): 946-55, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22034016

RESUMEN

Pathological bone destruction (osteolysis) is a hallmark of many bone diseases including tumor metastasis to bone, locally osteolytic giant cell tumor (GCT) of bone, and Paget's disease. Paclitaxel is frequently prescribed in the treatment of several malignant tumors where it has been shown to exert beneficial effects on bone lesions. However, the mechanism(s) through which paclitaxel regulates osteoclast formation and function remain ill defined. In the present study, we demonstrate that paclitaxel dose-dependently inhibits receptor activator of nuclear factor-kappa B ligand (RANKL)-induced osteoclastogenesis in both RAW264.7 cells and mouse bone marrow macrophage (BMM) systems. In addition, paclitaxel treatment reduces the bone resorptive activity of human osteoclasts derived from GCT of bone, and attenuates lipopolysaccharide (LPS)-induced osteolysis in a mouse calvarial model. Complementary cellular and biochemical analyses revealed that paclitaxel induces mitotic arrest of osteoclastic precursor cells. Furthermore, luciferase reporter gene assays and western blot analysis indicate that paclitaxel modulates key RANKL-induced activation pathways that are essential to osteoclast formation including NF-κB and ERK. Collectively, our findings demonstrate a role for paclitaxel in the regulation of osteoclast formation and function and uncover potential mechanism(s) through which paclitaxel alleviates pathological osteolysis.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Resorción Ósea , Puntos de Control de la Fase M del Ciclo Celular/efectos de los fármacos , Osteoclastos/efectos de los fármacos , Paclitaxel/farmacología , Ligando RANK/antagonistas & inhibidores , Animales , Neoplasias Óseas/patología , Línea Celular , Citoesqueleto/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Tumor Óseo de Células Gigantes/patología , Humanos , Ratones , Ratones Endogámicos C57BL , Mitosis/efectos de los fármacos , FN-kappa B/metabolismo , Osteoclastos/metabolismo , Osteoclastos/ultraestructura , Osteólisis , Ligando RANK/farmacología
7.
Prog Neurobiol ; 202: 102069, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33933532

RESUMEN

During the process of neuronal outgrowth, developing neurons produce new projections, neurites, that are essential for brain wiring. Here, we discover a relatively late-evolved protein that we denote Ac45-related protein (Ac45RP) and that, surprisingly, drives neuronal outgrowth. Ac45RP is a paralog of the Ac45 protein that is a component of the vacuolar proton ATPase (V-ATPase), the main pH regulator in eukaryotic cells. Ac45RP mRNA expression is brain specific and coincides with the peak of neurogenesis and the onset of synaptogenesis. Furthermore, Ac45RP physically interacts with the V-ATPase V0-sector and colocalizes with V0 in unconventional, but not synaptic, secretory vesicles of extending neurites. Excess Ac45RP enhances the expression of V0-subunits, causes a more elaborate Golgi, and increases the number of cytoplasmic vesicular structures, plasma membrane formation and outgrowth of actin-containing neurites devoid of synaptic markers. CRISPR-cas9n-mediated Ac45RP knockdown reduces neurite outgrowth. We conclude that the novel vertebrate- and brain-specific Ac45RP is a V0-interacting constituent of unconventional vesicular structures that drives membrane expansion during neurite outgrowth and as such may furnish a tool for future neuroregenerative treatment strategies.


Asunto(s)
Proyección Neuronal , ATPasas de Translocación de Protón Vacuolares , Animales , Encéfalo/metabolismo , Neuritas/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo , Vertebrados/metabolismo
8.
Theranostics ; 11(20): 9738-9751, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34815781

RESUMEN

Rationale: Angiogenesis and osteogenesis are highly coupled processes which are indispensable to bone repair. However, the underlying mechanism(s) remain elusive. To bridge the gap in understanding the coupling process is crucial to develop corresponding solutions to abnormal bone healing. Epidermal growth factor-like protein 6 (EGFL6) is an angiogenic factor specifically and distinctively up-regulated during osteoblast differentiation. In contrast with most currently known osteoblast-derived coupling factors, EGFL6 is highlighted with little or low expression in other cells and tissues. Methods: In this study, primary bone marrow mesenchymal stem cells (MSCs) and osteoblastic cell line (MC3T3-E1) were transduced with lentiviral silencing or overexpression constructs targeting EGFL6. Cells were induced by osteogenic medium, followed by the evaluation of mineralization as well as related gene and protein expression. Global and conditional knockout mice were established to examine the bone phenotype under physiological condition. Furthermore, bone defect models were created to investigate the outcome of bone repair in mice lacking EGFL6 expression. Results: We show that overexpression of EGFL6 markedly enhances osteogenic capacity in vitro by augmenting bone morphogenic protein (BMP)-Smad and MAPK signaling, whereas downregulation of EGFL6 diminishes osteoblastic mineralization. Interestingly, osteoblast differentiation was not affected by the exogenous addition of EGFL6 protein, thereby indicating that EGFL6 may regulate osteoblastic function in an intracrine manner. Mice with osteoblast-specific and global knockout of EGFL6 surprisingly exhibit a normal bone phenotype under physiological conditions. However, EGFL6-deficiency leads to compromised bone repair in a bone defect model which is characterized by decreased formation of type H vessels as well as osteoblast lineage cells. Conclusions: Together, these data demonstrate that EGFL6 serves as an essential regulator to couple osteogenesis to angiogenesis during bone repair.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Moléculas de Adhesión Celular/metabolismo , Neovascularización Fisiológica/fisiología , Osteogénesis/fisiología , Animales , Células de la Médula Ósea/metabolismo , Proteínas Morfogenéticas Óseas/metabolismo , Regeneración Ósea/fisiología , Huesos/metabolismo , Proteínas de Unión al Calcio/fisiología , Moléculas de Adhesión Celular/fisiología , Diferenciación Celular/fisiología , Línea Celular , Femenino , Sistema de Señalización de MAP Quinasas/fisiología , Masculino , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos C57BL , Osteoblastos/metabolismo , Cultivo Primario de Células , Transducción de Señal , Proteínas Smad/metabolismo
9.
Eur J Hum Genet ; 28(9): 1243-1264, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32376988

RESUMEN

Previously we reported the identification of a homozygous COL27A1 (c.2089G>C; p.Gly697Arg) missense variant and proposed it as a founder allele in Puerto Rico segregating with Steel syndrome (STLS, MIM #615155); a rare osteochondrodysplasia characterized by short stature, congenital bilateral hip dysplasia, carpal coalitions, and scoliosis. We now report segregation of this variant in five probands from the initial clinical report defining the syndrome and an additional family of Puerto Rican descent with multiple affected adult individuals. We modeled the orthologous variant in murine Col27a1 and found it recapitulates some of the major Steel syndrome associated skeletal features including reduced body length, scoliosis, and a more rounded skull shape. Characterization of the in vivo murine model shows abnormal collagen deposition in the extracellular matrix and disorganization of the proliferative zone of the growth plate. We report additional COL27A1 pathogenic variant alleles identified in unrelated consanguineous Turkish kindreds suggesting Clan Genomics and identity-by-descent homozygosity contributing to disease in this population. The hypothesis that carrier states for this autosomal recessive osteochondrodysplasia may contribute to common complex traits is further explored in a large clinical population cohort. Our findings augment our understanding of COL27A1 biology and its role in skeletal development; and expand the functional allelic architecture in this gene underlying both rare and common disease phenotypes.


Asunto(s)
Anomalías Múltiples/genética , Colágenos Fibrilares/genética , Efecto Fundador , Luxación de la Cadera/genética , Escoliosis/genética , Anomalías Múltiples/patología , Adolescente , Animales , Desarrollo Óseo , Niño , Preescolar , Consanguinidad , Matriz Extracelular/metabolismo , Matriz Extracelular/patología , Femenino , Colágenos Fibrilares/metabolismo , Frecuencia de los Genes , Luxación de la Cadera/patología , Homocigoto , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Mutación , Linaje , Escoliosis/patología , Síndrome
10.
Bone ; 116: 232-247, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30125729

RESUMEN

Faulty bony repair causes dysrepair of injured growth plate cartilage and bone growth defects in children; however, the underlying mechanisms are unclear. Recently, we observed the prominent induction of neurotrophin­3 (NT-3) and its important roles as an osteogenic and angiogenic factor promoting the bony repair. The current study investigated its roles in regulating injury site remodelling. In a rat tibial growth plate drill-hole injury repair model, NT-3 was expressed prominently in osteoblasts at the injury site. Recombinant NT-3 (rhNT-3) systemic treatment enhanced, but NT-3 immunoneutralization attenuated, expression of cartilage-removal proteases (MMP-9 and MMP-13), presence of bone-resorbing osteoclasts and expression of osteoclast protease cathepsin K, and remodelling at the injury site. NT-3 was also highly induced in cultured mineralizing rat bone marrow stromal cells, and the conditioned medium augmented osteoclast formation and resorptive activity, an ability that was blocked by presence of anti-NT-3 antibody. Moreover, NT-3 and receptor TrkC were induced during osteoclastogenesis, and rhNT-3 treatment activated TrkC downstream kinase Erk1/2 in differentiating osteoclasts although rhNT-3 alone did not affect activation of osteoclastogenic transcription factors NF-κB or NFAT in RAW264.7 osteoclast precursor cells. Furthermore, rhNT-3 treatment increased, but NT-3 neutralization reduced, expression of osteoclastogenic cytokines (RANKL, TNF-α, and IL-1) in mineralizing osteoblasts and in growth plate injury site, and rhNT-3 augmented the induction of these cytokines caused by RANKL treatment in RAW264.7 cells. Thus, injury site osteoblast-derived NT-3 is important in promoting growth plate injury site remodelling, as it induces cartilage proteases for cartilage removal and augments osteoclastogenesis and resorption both directly (involving activing Erk1/2 and substantiating RANKL-induced increased expression of osteoclastogenic signals in differentiating osteoclasts) and indirectly (inducing osteoclastogenic signals in osteoblasts).


Asunto(s)
Cartílago Articular/patología , Placa de Crecimiento/metabolismo , Placa de Crecimiento/patología , Neurotrofina 3/metabolismo , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Péptido Hidrolasas/metabolismo , Animales , Callo Óseo/metabolismo , Callo Óseo/patología , Citocinas/metabolismo , Activación Enzimática/efectos de los fármacos , Placa de Crecimiento/efectos de los fármacos , Humanos , Masculino , Ratones , FN-kappa B/metabolismo , Factores de Transcripción NFATC/metabolismo , Osteoblastos/efectos de los fármacos , Osteoblastos/patología , Osteoclastos/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Ligando RANK/farmacología , Células RAW 264.7 , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas Sprague-Dawley , Receptor trkC/metabolismo
11.
Dev Cell ; 42(5): 445-461.e5, 2017 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-28844842

RESUMEN

Dural cerebral veins (CV) are required for cerebrospinal fluid reabsorption and brain homeostasis, but mechanisms that regulate their growth and remodeling are unknown. We report molecular and cellular processes that regulate dural CV development in mammals and describe venous malformations in humans with craniosynostosis and TWIST1 mutations that are recapitulated in mouse models. Surprisingly, Twist1 is dispensable in endothelial cells but required for specification of osteoprogenitor cells that differentiate into preosteoblasts that produce bone morphogenetic proteins (BMPs). Inactivation of Bmp2 and Bmp4 in preosteoblasts and periosteal dura causes skull and CV malformations, similar to humans harboring TWIST1 mutations. Notably, arterial development appears normal, suggesting that morphogens from the skull and dura establish optimal venous networks independent from arterial influences. Collectively, our work establishes a paradigm whereby CV malformations result from primary or secondary loss of paracrine BMP signaling from preosteoblasts and dura, highlighting unique cellular interactions that influence tissue-specific angiogenesis in mammals.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Venas Cerebrales/anomalías , Venas Cerebrales/metabolismo , Proteínas Nucleares/metabolismo , Transducción de Señal , Cráneo/patología , Células Madre/metabolismo , Proteína 1 Relacionada con Twist/metabolismo , Animales , Diferenciación Celular , Arterias Cerebrales/crecimiento & desarrollo , Arterias Cerebrales/patología , Venas Cerebrales/patología , Suturas Craneales/patología , Craneosinostosis/genética , Craneosinostosis/patología , Duramadre/patología , Femenino , Humanos , Mesodermo/metabolismo , Ratones , Ratones Mutantes , Mutación/genética , Cresta Neural/patología , Osteoblastos , Comunicación Paracrina , Senos Transversos/patología
12.
Sci Rep ; 6: 37963, 2016 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-27897225

RESUMEN

Calmodulin is a highly versatile protein that regulates intracellular calcium homeostasis and is involved in a variety of cellular functions including cardiac excitability, synaptic plasticity and signaling transduction. During osteoclastic bone resorption, calmodulin has been reported to concentrate at the ruffled border membrane of osteoclasts where it is thought to modulate bone resorption activity in response to calcium. Here we report an interaction between calmodulin and Rab3D, a small exocytic GTPase and established regulator osteoclastic bone resorption. Using yeast two-hybrid screening together with a series of protein-protein interaction studies, we show that calmodulin interacts with Rab3D in a calcium dependent manner. Consistently, expression of a calcium insensitive form of calmodulin (i.e. CaM1234) perturbs calmodulin-Rab3D interaction as monitored by bioluminescence resonance energy transfer (BRET) assays. In osteoclasts, calmodulin and Rab3D are constitutively co-expressed during RANKL-induced osteoclast differentiation, co-occupy plasma membrane fractions by differential gradient sedimentation assay and colocalise in the ruffled border as revealed by confocal microscopy. Further, functional blockade of calmodulin-Rab3D interaction by calmidazolium chloride coincides with an attenuation of osteoclastic bone resorption. Our data imply that calmodulin- Rab3D interaction is required for efficient bone resorption by osteoclasts in vitro.


Asunto(s)
Resorción Ósea/patología , Calmodulina/metabolismo , Osteoclastos/patología , Proteínas de Unión al GTP rab3/metabolismo , Animales , Resorción Ósea/metabolismo , Diferenciación Celular , Membrana Celular/metabolismo , Células Cultivadas , Ratones , Osteoclastos/metabolismo , Técnicas del Sistema de Dos Híbridos
13.
Sci Rep ; 6: 36210, 2016 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-27782206

RESUMEN

Angiogenesis plays an important role in bone development and remodeling and is mediated by a plethora of potential angiogenic factors. However, data regarding specific angiogenic factors that are secreted within the bone microenvironment to regulate osteoporosis is lacking. Here, we report that Nephronectin (NPNT), a member of the epidermal growth factor (EGF) repeat superfamily proteins and a homologue of EGFL6, is expressed in osteoblasts. Intriguingly, the gene expression of NPNT is reduced in the bone of C57BL/6J ovariectomised mice and in osteoporosis patients. In addition, the protein levels of NPNT and CD31 are also found to be reduced in the tibias of OVX mice. Exogenous addition of mouse recombinant NPNT on endothelial cells stimulates migration and tube-like structure formation in vitro. Furthermore, NPNT promotes angiogenesis in an ex vivo fetal mouse metatarsal angiogenesis assay. We show that NPNT stimulates the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and p38 mitogen-activated kinase (MAPK) in endothelial cells. Inhibition of ERK1/2 impaired NPNT-induced endothelial cell migration, tube-like structure formation and angiogenesis. Taken together, these results demonstrate that NPNT is a paracrine angiogenic factor and may play a role in pathological osteoporosis. This may lead to new targets for treatment of bone diseases and injuries.


Asunto(s)
Proteínas de la Matriz Extracelular/metabolismo , Neovascularización Fisiológica/fisiología , Osteoblastos/metabolismo , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/genética , Animales , Butadienos/farmacología , Diferenciación Celular/genética , Células Cultivadas , Regulación hacia Abajo , Proteínas de la Matriz Extracelular/genética , Femenino , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Neovascularización Fisiológica/efectos de los fármacos , Nitrilos/farmacología , Osteoblastos/citología , Osteoclastos/citología , Osteoclastos/metabolismo , Osteoporosis/diagnóstico por imagen , Osteoporosis/genética , Ovariectomía , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Transcriptoma
14.
J Bone Miner Res ; 31(6): 1258-74, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26763079

RESUMEN

Injured growth plate is often repaired by bony tissue causing bone growth defects, for which the mechanisms remain unclear. Because neurotrophins have been implicated in bone fracture repair, here we investigated their potential roles in growth plate bony repair in rats. After a drill-hole injury was made in the tibial growth plate and bone, increased injury site mRNA expression was observed for neurotrophins NGF, BDNF, NT-3, and NT-4 and their Trk receptors. NT-3 and its receptor TrkC showed the highest induction. NT-3 was localized to repairing cells, whereas TrkC was observed in stromal cells, osteoblasts, and blood vessel cells at the injury site. Moreover, systemic NT-3 immunoneutralization reduced bone volume at injury sites and also reduced vascularization at the injured growth plate, whereas recombinant NT-3 treatment promoted bony repair with elevated levels of mRNA for osteogenic markers and bone morphogenetic protein (BMP-2) and increased vascularization and mRNA for vascular endothelial growth factor (VEGF) and endothelial cell marker CD31 at the injured growth plate. When examined in vitro, NT-3 promoted osteogenesis in rat bone marrow stromal cells, induced Erk1/2 and Akt phosphorylation, and enhanced expression of BMPs (particularly BMP-2) and VEGF in the mineralizing cells. It also induced CD31 and VEGF mRNA in rat primary endothelial cell culture. BMP activity appears critical for NT-3 osteogenic effect in vitro because it can be almost completely abrogated by co-addition of the BMP inhibitor noggin. Consistent with its angiogenic effect in vivo, NT-3 promoted angiogenesis in metatarsal bone explants, an effect abolished by co-treatment with anti-VEGF. This study suggests that NT-3 may be an osteogenic and angiogenic factor upstream of BMP-2 and VEGF in bony repair, and further studies are required to investigate whether NT-3 may be a potential target for preventing growth plate faulty bony repair or for promoting bone fracture healing. © 2016 American Society for Bone and Mineral Research.


Asunto(s)
Proteína Morfogenética Ósea 2/metabolismo , Regeneración Ósea/fisiología , Cartílago/metabolismo , Placa de Crecimiento/metabolismo , Neurotrofina 3/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Sistema de Señalización de MAP Quinasas/fisiología , Masculino , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Osteogénesis/fisiología , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Sprague-Dawley
15.
Arthritis Res Ther ; 17: 210, 2015 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-26279273

RESUMEN

INTRODUCTION: Structural alterations in intra-articular and subchondral compartments are hallmarks of osteoarthritis, a degenerative disease that causes pain and disability in the aging population. Protein kinase C delta (PKC-δ) plays versatile functions in cell growth and differentiation, but its role in the articular cartilage and subchondral bone is not known. METHODS: Histological analysis including alcian blue, safranin O staining and fluorochrome labeling were used to reveal structural alterations at the articular cartilage surface and bone-cartilage interface in PKC-δ knockout (KO) mice. The morphology and organization of chondrocytes were studied using confocal microscopy. Glycosaminoglycan content was studied by micromass culture of chondrocytes of PKC-δ KO mice. RESULTS: We uncovered atypical structural demarcation between articular cartilage and subchondral bone of PKC-δ KO mice. Histology analyses revealed a thickening of the articular cartilage and calcified bone-cartilage interface, and decreased safranin O staining accompanied by an increase in the number of hypertrophic chondrocytes in the articular cartilage of PKC-δ KO mice. Interestingly, loss of demarcation between articular cartilage and bone was concomitant with irregular chondrocyte morphology and arrangement. Consistently, in vivo calcein labeling assay showed an increased intensity of calcein labeling in the interface of the growth plate and metaphysis in PKC-δ KO mice. Furthermore, in vitro culture of chondrocyte micromass showed a decreased alcian blue staining of chondrocyte micromass in the PKC-δ KO mice, indicative of a reduced level of glycosaminoglycan production. CONCLUSIONS: Our data imply a role for PKC-δ in the osteochondral plasticity of the interface between articular cartilage and the osteochondral junction.


Asunto(s)
Huesos/metabolismo , Cartílago Articular/metabolismo , Osteoartritis/metabolismo , Proteína Quinasa C-delta/metabolismo , Animales , Huesos/patología , Cartílago Articular/patología , Células Cultivadas , Condrocitos/metabolismo , Condrocitos/patología , Glicosaminoglicanos/metabolismo , Placa de Crecimiento/metabolismo , Placa de Crecimiento/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Confocal , Osteoartritis/genética , Proteína Quinasa C-delta/genética , Coloración y Etiquetado/métodos
16.
Mol Cell Endocrinol ; 399: 346-53, 2015 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-25448849

RESUMEN

The RANKL-induced NF-κB signaling pathway is required for osteoclast formation and function. By screening for compounds that inhibit RANKL-induced NF-κB activation using a luciferase reporter gene assay in RAW264.7 cells, we identified triptolide (PG490), as a candidate compound targeting osteoclast differentiation and osteoclast-mediated osteolysis. Triptolide (PG490) is an active compound of the medicinal herb Tripterygium wilfordii Hook F (TWHF) or Lei Gong Teng with known anti-inflammatory properties. We found that triptolide inhibited osteoclastogenesis and bone resorption, as well as RANKL-induced NF-қB activities as monitored by luciferase reporter gene assays and the nuclear translocation of p65. In vivo studies showed that triptolide attenuates titanium-induced osteolysis and osteoclast formation in a mouse calvarial model. Considering that drugs which protect against localized bone loss are critically needed for the effective treatment of particle-induced osteolysis, our data suggest that triptolide might have therapeutic potential for the treatment of bone lytic diseases caused by prosthetic wear particles.


Asunto(s)
Antineoplásicos Alquilantes/farmacología , Diterpenos/farmacología , Osteoclastos/metabolismo , Osteólisis/tratamiento farmacológico , Fenantrenos/farmacología , Ligando RANK/metabolismo , Titanio/toxicidad , Factor de Transcripción ReIA/metabolismo , Animales , Línea Celular , Compuestos Epoxi/farmacología , Ratones , Osteoclastos/patología , Osteólisis/inducido químicamente , Osteólisis/metabolismo , Osteólisis/patología
17.
FEBS Lett ; 588(1): 143-50, 2014 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-24269886

RESUMEN

Bone remodeling is regulated by secreted factors in the bone microenvironment. However, data regarding osteoclast-derived factors that influence osteoblast differentiation are lacking. Here, we show that HtrA1 is produced as a secreted protein during osteoclastogenesis, and negatively regulates osteoblast differentiation. Exogenous addition of recombinant HtrA1 attenuates osteoblast differentiation and BMP2-induced Smad1/5/8, ERK1/2 and p38 phosphorylation in pre-osteoblasts. Our studies imply a unique mode of crosstalk in which HtrA1 is produced by both osteoclasts and osteoblasts and negatively regulates osteoblast differentiation, suggesting that HtrA1 may mediate the fine tuning of paracrine and autocrine regulations during bone remodeling processes.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Proteína Quinasa 14 Activada por Mitógenos/metabolismo , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Serina Endopeptidasas/metabolismo , Proteínas Smad/metabolismo , Secuencia de Aminoácidos , Animales , Western Blotting , Proteína Morfogenética Ósea 2/farmacología , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Línea Celular , Células Cultivadas , Femenino , Perfilación de la Expresión Génica , Serina Peptidasa A1 que Requiere Temperaturas Altas , Masculino , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Osteoblastos/citología , Osteoclastos/citología , Osteoclastos/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Osteogénesis/genética , Fosforilación/efectos de los fármacos , Ligando RANK/genética , Ligando RANK/metabolismo , Ligando RANK/farmacología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido , Serina Endopeptidasas/genética , Serina Endopeptidasas/farmacología , Regulación hacia Arriba/efectos de los fármacos
18.
Cytokine Growth Factor Rev ; 24(3): 297-310, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23611723

RESUMEN

Angiogenesis plays an important role in physiological bone growth and remodeling, as well as in pathological bone disorders such as fracture repair, osteonecrosis, and tumor metastasis to bone. Vascularization is required for bone remodeling along the endosteal surface of trabecular bone or Haversian canals within the cortical bone, as well as the homeostasis of the cartilage-subchondral bone interface. Angiogenic factors, produced by cells from a basic multicellular unit (BMU) within the bone remodeling compartment (BRC) regulate local endothelial cells and pericytes. In this review, we discuss the expression and function of angiogenic factors produced by osteoclasts, osteoblasts and osteocytes in the BMU and in the cartilage-subchondral bone interface. These include vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), BMP7, receptor activator of NF-κB ligand (RANKL) and epidermal growth factor (EGF)-like family members. In addition, the expression of EGFL2, EGFL3, EGFL5, EGFL6, EGFL7, EGFL8 and EGFL9 has been recently identified in the bone local environment, giving important clues to their possible roles in angiogenesis. Understanding the role of angiogenic factors in the bone microenvironment may help to develop novel therapeutic targets and diagnostic biomarkers for bone and joint diseases, such as osteoporosis, osteonecrosis, osteoarthritis, and delayed fracture healing.


Asunto(s)
Inductores de la Angiogénesis/farmacología , Huesos/efectos de los fármacos , Factor de Crecimiento Epidérmico/fisiología , Desarrollo Óseo , Proteína Morfogenética Ósea 7/fisiología , Remodelación Ósea/efectos de los fármacos , Humanos , Neovascularización Fisiológica , Ligando RANK/fisiología
19.
Biochem Pharmacol ; 86(12): 1775-83, 2013 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-24091016

RESUMEN

The RANKL-induced NF-κB signaling pathway is essential for osteoclastogenesis. This study aims to identify specific inhibitors targeting NF-κB signaling pathway, which might serve as useful small molecule inhibitors for the treatment and alleviation of osteoclast-mediated bone lytic diseases. By screening for compounds that selectively inhibit RANKL-induced NF-κB activation in RAW264.7 cells as monitored by luciferase reporter gene assay, we identified SC-514, a specific inhibitor of IKKß, as a candidate compound targeting osteoclastogenesis. SC-514 dose-dependently inhibits RANKL-induced osteoclastogenesis with an IC50 of <5µM. At high concentrations, SC-514 (≥12.5µM) induced apoptosis and caspase 3 activation in RAW264.7 cells. Moreover, SC-514 specifically suppressed NF-κB activity owing to delayed RANKL-induced degradation of IκBα and inhibition of p65 nuclear translocation. Taken together, our results indicate that SC-514 impairs RANKL-induced osteoclastogenesis and NF-κB activation. Thus, targeting IKKß by SC-514 presents as a potential treatment for osteoclast-related disorders such as osteoporosis and cancer-induced bone loss.


Asunto(s)
División Celular/efectos de los fármacos , Quinasa I-kappa B/antagonistas & inhibidores , FN-kappa B/metabolismo , Osteoclastos/citología , Ligando RANK/efectos de los fármacos , Tiofenos/farmacología , Animales , Apoptosis , Western Blotting , Caspasa 3/metabolismo , División Celular/fisiología , Línea Celular , Relación Dosis-Respuesta a Droga , Activación Enzimática , Ratones , Osteoclastos/enzimología , Osteoclastos/metabolismo , Ligando RANK/fisiología , Transducción de Señal
20.
PLoS One ; 8(8): e70815, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23951014

RESUMEN

Bone remodeling is intrinsically regulated by cell signaling molecules. The Protein Kinase C (PKC) family of serine/threonine kinases is involved in multiple signaling pathways including cell proliferation, differentiation, apoptosis and osteoclast biology. However, the precise involvement of individual PKC isoforms in the regulation of osteoclast formation and bone homeostasis remains unclear. Here, we identify PKC-δ as the major PKC isoform expressed among all PKCs in osteoclasts; including classical PKCs (-α, -ß and -γ), novel PKCs (-δ, -ε, -η and -θ) and atypical PKCs (-ι/λ and -ζ). Interestingly, pharmacological inhibition and genetic ablation of PKC-δ impairs osteoclastic bone resorption in vitro. Moreover, disruption of PKC-δ activity protects against LPS-induced osteolysis in mice, with osteoclasts accumulating on the bone surface failing to resorb bone. Treatment with the PKC-δ inhibitor Rottlerin, blocks LPS-induced bone resorption in mice. Consistently, PKC-δ deficient mice exhibit increased trabeculae bone containing residual cartilage matrix, indicative of an osteoclast-rich osteopetrosis phenotype. Cultured ex vivo osteoclasts derived from PKC-δ null mice exhibit decreased CTX-1 levels and MARKS phosphorylation, with enhanced formation rates. This is accompanied by elevated gene expression levels of cathepsin K and PKC -α, -γ and -ε, as well as altered signaling of pERK and pcSrc416/527 upon RANKL-induction, possibly to compensate for the defects in bone resorption. Collectively, our data indicate that PKC-δ is an intrinsic regulator of osteoclast formation and bone resorption and thus is a potential therapeutic target for pathological osteolysis.


Asunto(s)
Lipopolisacáridos/inmunología , Osteoclastos/patología , Osteólisis/genética , Osteólisis/inmunología , Proteína Quinasa C-delta/antagonistas & inhibidores , Proteína Quinasa C-delta/genética , Acetofenonas/uso terapéutico , Animales , Benzopiranos/uso terapéutico , Resorción Ósea/tratamiento farmacológico , Resorción Ósea/genética , Resorción Ósea/inmunología , Resorción Ósea/patología , Catepsina K/genética , Células Cultivadas , Inhibidores Enzimáticos/uso terapéutico , Femenino , Eliminación de Gen , Regulación de la Expresión Génica , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Osteoclastos/efectos de los fármacos , Osteoclastos/inmunología , Osteoclastos/metabolismo , Osteólisis/tratamiento farmacológico , Osteólisis/patología , Fosforilación , Proteína Quinasa C-delta/inmunología , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA