RESUMEN
ABSTRACT: Rondaptivon pegol (previously BT200) is a pegylated RNA aptamer that binds to the A1 domain of von Willebrand factor (VWF). Recent clinical trials demonstrated that BT200 significantly increased plasma VWF-factor VIII levels by attenuating VWF clearance. The biological mechanism(s) through which BT200 attenuates in vivo clearance of VWF has not been defined. We hypothesized that BT200 interaction with the VWF-A1 domain may increase plasma VWF levels by attenuating macrophage-mediated clearance. We observed that full-length and VWF-A1A2A3 binding to macrophages and VWF-A1 domain binding to lipoprotein receptor-related protein 1 (LRP1) cluster II and cluster IV were concentration-dependently inhibited by BT200. Additionally, full-length VWF binding to LRP1 expressed on HEK293T (HEK-LRP1) cells was also inhibited by BT200. Importantly, BT200 interacts with the VWF-A1 domain in proximity to a conserved cluster of 4 lysine residues (K1405, K1406, K1407, and K1408). Alanine mutagenesis of this K1405-K1408 cluster (VWF-4A) significantly (P < .001) attenuated binding of VWF to both LRP1 clusters II and IV. Furthermore, in vivo clearance of VWF-4A was significantly (P < .001) reduced than that of wild-type VWF. BT200 did not significantly inhibit binding of VWF-4A to LRP1 cluster IV or HEK-LRP1 cells. Finally, BT200 interaction with the VWF-A1 domain also inhibited binding to macrophage galactose lectin and the SR-AI scavenger receptor. Collectively, our findings demonstrate that BT200 prolongs VWF half-life by attenuating macrophage-mediated clearance and specifically the interaction of K1405-K1408 in the VWF-A1 domain with macrophage LRP1. These data support the concept that targeted inhibition of VWF clearance pathways represents a novel therapeutic approach for von Willebrand disease and hemophilia A.
Asunto(s)
Aptámeros de Nucleótidos , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad , Macrófagos , Factor de von Willebrand , Humanos , Factor de von Willebrand/metabolismo , Factor de von Willebrand/genética , Aptámeros de Nucleótidos/farmacología , Aptámeros de Nucleótidos/metabolismo , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Animales , Células HEK293 , Ratones , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Unión Proteica , Dominios ProteicosRESUMEN
BACKGROUND: Although most plasma FVIII (Factor VIII) circulates in complex with VWF (von Willebrand factor), a minority (3%-5%) circulates as free-FVIII, which is rapidly cleared. Consequently, 20% of total FVIII may be cleared as free-FVIII. Critically, the mechanisms of free-FVIII clearance remain poorly understood. However, recent studies have implicated the MGL (macrophage galactose lectin) in modulating VWF clearance. METHODS: Since VWF and FVIII share similar glycosylation, we investigated the role of MGL in FVIII clearance. FVIII binding to MGL was assessed in immunosorbent and cell-based assays. In vivo, FVIII clearance was assessed in MGL1-/- and VWF-/-/FVIII-/- mice. RESULTS: In vitro-binding studies identified MGL as a novel macrophage receptor that binds free-FVIII in a glycan-dependent manner. MGL1-/- and MGL1-/- mice who received an anti-MGL1/2 blocking antibody both showed significantly increased endogenous FVIII activity compared with wild-type mice (P=0.036 and P<0.0001, respectively). MGL inhibition also prolonged the half-life of infused FVIII in FVIII-/- mice. To assess whether MGL plays a role in the clearance of free FVIII in a VWF-independent manner, in vivo clearance experiments were repeated in dual VWF-/-/FVIII-/- mice. Importantly, the rapid clearance of free FVIII in VWF-/-/FVIII-/- mice was significantly (P=0.012) prolonged in the presence of anti-MGL1/2 antibodies. Finally, endogenous plasma FVIII levels in VWF-/- mice were significantly increased following MGL inhibition (P=0.016). CONCLUSIONS: Cumulatively, these findings demonstrate that MGL plays an important role in regulating macrophage-mediated clearance of both VWF-bound FVIII and free-FVIII in vivo. We propose that this novel FVIII clearance pathway may be of particular clinical importance in patients with type 2N or type 3 Von Willebrand disease.
Asunto(s)
Hemostáticos , Enfermedades de von Willebrand , Ratones , Animales , Factor VIII/genética , Factor VIII/metabolismo , Factor de von Willebrand/metabolismo , Galactosa/metabolismo , Lectinas/metabolismo , Macrófagos/metabolismoRESUMEN
Terminal sialylation determines the plasma half-life of von Willebrand factor (VWF). A role for macrophage galactose lectin (MGL) in regulating hyposialylated VWF clearance has recently been proposed. In this study, we showed that MGL influences physiological plasma VWF clearance. MGL inhibition was associated with a significantly extended mean residence time and 3-fold increase in endogenous plasma VWF antigen levels (P<0.05). Using a series of VWF truncations, we further demonstrated that the A1 domain of VWF is predominantly responsible for enabling the MGL interaction. Binding of both full-length and VWF-A1-A2-A3 to MGL was significantly enhanced in the presence of ristocetin (P<0.05), suggesting that the MGL-binding site in A1 is not fully accessible in globular VWF. Additional studies using different VWF glycoforms demonstrated that VWF O-linked glycans, clustered at either end of the A1 domain, play a key role in protecting VWF against MGLmediated clearance. Reduced sialylation has been associated with pathological, increased clearance of VWF in patients with von Willebrand disease. Herein, we demonstrate that specific loss of α2-3 linked sialylation from O-glycans results in markedly increased MGL-binding in vitro, and markedly enhanced MGL-mediated clearance of VWF in vivo. Our data further show that the asialoglycoprotein receptor (ASGPR) does not have a significant role in mediating the increased clearance of VWF following loss of O-sialylation. Conversely however, we observed that loss of N-linked sialylation from VWF drives enhanced circulatory clearance predominantly via the ASGPR. Collectively, our data support the hypothesis that in addition to regulating physiological VWF clearance, the MGL receptor works in tandem with ASGPR to modulate enhanced clearance of aberrantly sialylated VWF in the pathogenesis of von Willebrand disease.
Asunto(s)
Galactosa , Ácido N-Acetilneuramínico , Factor de von Willebrand , Galactosa/metabolismo , Humanos , Lectinas/metabolismo , Macrófagos/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Polisacáridos/metabolismo , Factor de von Willebrand/metabolismoRESUMEN
Glycan determinants on von Willebrand factor (VWF) play critical roles in regulating its susceptibility to proteolysis and clearance. Abnormal glycosylation has been shown to cause von Willebrand disease (VWD) in a number of different mouse models. However, because of the significant technical challenges associated with accurate assessment of VWF glycan composition, the importance of carbohydrates in human VWD pathogenesis remains largely unexplored. To address this, we developed a novel lectin-binding panel to enable human VWF glycan characterization. This methodology was then used to study glycan expression in a cohort of 110 patients with low VWF compared with O blood group-matched healthy controls. Interestingly, significant interindividual heterogeneity in VWF glycan expression was seen in the healthy control population. This variation included terminal sialylation and ABO(H) blood group expression on VWF. Importantly, we also observed evidence of aberrant glycosylation in a subgroup of patients with low VWF. In particular, terminal α(2-6)-linked sialylation was reduced in patients with low VWF, with a secondary increase in galactose (Gal) exposure. Furthermore, an inverse correlation between Gal exposure and estimated VWF half-life was observed in those patients with enhanced VWF clearance. Together, these findings support the hypothesis that loss of terminal sialylation contributes to the pathophysiology underpinning low VWF in at least a subgroup of patients by promoting enhanced clearance. In addition, alterations in VWF carbohydrate expression are likely to contribute to quantitative and qualitative variations in VWF levels in the normal population. This trial was registered at www.clinicaltrials.gov as #NCT03167320.
Asunto(s)
Galactosa/metabolismo , Galactosa/farmacocinética , Factor de von Willebrand/metabolismo , Sistema del Grupo Sanguíneo ABO/química , Estudios de Casos y Controles , Glicosilación , Humanos , Tasa de Depuración Metabólica , Ácido N-Acetilneuramínico/metabolismo , Polisacáridos/química , Polisacáridos/metabolismo , Factor de von Willebrand/químicaRESUMEN
Previous studies have shown that loss of terminal sialic acid causes enhanced von Willebrand factor (VWF) clearance through the Ashwell-Morrell receptor (AMR). In this study, we investigated (1) the specific importance of N- vs O-linked sialic acid in protecting against VWF clearance and (2) whether additional receptors contribute to the reduced half-life of hyposialylated VWF. α2-3-linked sialic acid accounts for <20% of total sialic acid and is predominantly expressed on VWF O-glycans. Nevertheless, specific digestion with α2-3 neuraminidase (α2-3Neu-VWF) was sufficient to cause markedly enhanced VWF clearance. Interestingly, in vivo clearance experiments in dual VWF-/-/Asgr1-/- mice demonstrated enhanced clearance of α2-3Neu-VWF even in the absence of the AMR. The macrophage galactose-type lectin (MGL) is a C-type lectin that binds to glycoproteins expressing terminal N-acetylgalactosamine or galactose residues. Importantly, the markedly enhanced clearance of hyposialylated VWF in VWF-/-/Asgr1-/- mice was significantly attenuated in the presence of an anti-MGL inhibitory antibody. Furthermore, dose-dependent binding of human VWF to purified recombinant human MGL was confirmed using surface plasmon resonance. Additionally, plasma VWF:Ag levels were significantly elevated in MGL1-/- mice compared with controls. Collectively, these findings identify MGL as a novel macrophage receptor for VWF that significantly contributes to the clearance of both wild-type and hyposialylated VWF.
Asunto(s)
Receptor de Asialoglicoproteína/metabolismo , Asialoglicoproteínas/metabolismo , Lectinas Tipo C/metabolismo , Macrófagos/metabolismo , Proteínas de la Membrana/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Factor de von Willebrand/fisiología , Animales , Receptor de Asialoglicoproteína/genética , Asialoglicoproteínas/genética , Células Cultivadas , Humanos , Lectinas Tipo C/genética , Macrófagos/citología , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ácido N-Acetilneuramínico/químicaRESUMEN
Enhanced von Willebrand factor (VWF) clearance is important in the etiology of von Willebrand disease. However, the molecular mechanisms underlying VWF clearance remain poorly understood. In this study, we investigated the role of VWF domains and specific glycan moieties in regulating in vivo clearance. Our findings demonstrate that the A1 domain of VWF contains a receptor-recognition site that plays a key role in regulating the interaction of VWF with macrophages. In A1-A2-A3 and full-length VWF, this macrophage-binding site is cryptic but becomes exposed following exposure to shear or ristocetin. Previous studies have demonstrated that the N-linked glycans within the A2 domain play an important role in modulating susceptibility to ADAMTS13 proteolysis. We further demonstrate that these glycans presented at N1515 and N1574 also play a critical role in protecting VWF against macrophage binding and clearance. Indeed, loss of the N-glycan at N1515 resulted in markedly enhanced VWF clearance that was significantly faster than that observed with any previously described VWF mutations. In addition, A1-A2-A3 fragments containing the N1515Q or N1574Q substitutions also demonstrated significantly enhanced clearance. Importantly, clodronate-induced macrophage depletion significantly attenuated the increased clearance observed with N1515Q and N1574Q in both full-length VWF and A1-A2-A3. Finally, we further demonstrate that loss of these N-linked glycans does not enhance clearance in VWF in the presence of a structurally constrained A2 domain. Collectively, these novel findings support the hypothesis that conformation of the VWF A domains plays a critical role in modulating macrophage-mediated clearance of VWF in vivo.
Asunto(s)
Macrófagos/metabolismo , Polisacáridos/metabolismo , Factor de von Willebrand/metabolismo , Sustitución de Aminoácidos , Animales , Línea Celular Tumoral , Humanos , Macrófagos/citología , Ratones , Ratones Noqueados , Mutación Missense , Polisacáridos/química , Polisacáridos/genética , Dominios Proteicos , Factor de von Willebrand/química , Factor de von Willebrand/genéticaRESUMEN
Plasmodium falciparum malaria infection is associated with an early marked increase in plasma von Willebrand factor (VWF) levels, together with a pathological accumulation of hyperreactive ultra-large VWF (UL-VWF) multimers. Given the established critical role of platelets in malaria pathogenesis, these increases in plasma VWF raise the intriguing possibility that VWF may play a direct role in modulating malaria pathogenesis. To address this hypothesis, we used an established murine model of experimental cerebral malaria (ECM), in which wild-type (WT) C57BL/6J mice were infected with Plasmodium berghei ANKA. In keeping with findings in children with P falciparum malaria, acute endothelial cell activation was an early and consistent feature in the murine model of cerebral malaria (CM), resulting in significantly increased plasma VWF levels. Despite the fact that murine plasma ADAMTS13 levels were not significantly reduced, pathological UL-VWF multimers were also observed in murine plasma following P berghei infection. To determine whether VWF plays a role in modulating the pathogenesis of CM in vivo, we further investigated P berghei infection in VWF(-/-) C57BL/6J mice. Clinical ECM progression was delayed, and overall survival was significantly prolonged in VWF(-/-) mice compared with WT controls. Despite this protection against ECM, no significant differences in platelet counts or blood parasitemia levels were observed between VWF(-/-) and WT mice. Interestingly, however, the degree of ECM-associated enhanced blood-brain barrier permeability was significantly attenuated in VWF(-/-) mice compared with WT controls. Given the significant morbidity and mortality associated with CM, these novel data may have direct translational significance.
Asunto(s)
Malaria Cerebral/etiología , Malaria Cerebral/metabolismo , Factor de von Willebrand/metabolismo , Animales , Antígenos/metabolismo , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/patología , Células Endoteliales/metabolismo , Humanos , Malaria Cerebral/parasitología , Malaria Cerebral/prevención & control , Ratones Endogámicos C57BL , Modelos Biológicos , Péptidos/metabolismo , Permeabilidad , Plasmodium berghei , Multimerización de Proteína , Trombocitopenia/sangre , Trombocitopenia/complicacionesRESUMEN
OBJECTIVE: Previous studies have demonstrated a role for plasmin in regulating plasma von Willebrand factor (VWF) multimer composition. Moreover, emerging data have shown that plasmin-induced cleavage of VWF is of particular importance in specific pathological states. Interestingly, plasmin has been successfully used as an alternative to ADAMTS13 (a disintegrin and metalloproteinase with thrombospondin type 1 motif) in a mouse model of thrombotic thrombocytopenic purpura. Consequently, elucidating the molecular mechanisms through which plasmin binds and cleaves VWF is not only of basic scientific interest but also of direct clinical importance. Our aim was to investigate factors that modulate the susceptibility of human VWF to proteolysis by plasmin. APPROACH AND RESULTS: We have adapted the VWF vortex proteolysis assay to allow for time-dependent shear exposure studies. We show that globular VWF is resistant to plasmin cleavage under static conditions, but is readily cleaved by plasmin under shear. Although both plasmin and ADAMTS13 cleave VWF in a shear-dependent manner, plasmin does not cleave at the Tyr1605-Met1606 ADAMTS13 proteolytic site in the A2 domain. Rather under shear stress conditions, or in the presence of denaturants, such as urea or ristocetin, plasmin cleaves the K1491-R1492 peptide bond within the VWF A1-A2 linker region. Finally, we demonstrate that VWF susceptibility to plasmin proteolysis at K1491-R1492 is modulated by local N-linked glycan expression within A1A2A3, and specifically inhibited by heparin binding to the A1 domain. CONCLUSIONS: Improved understanding of the plasmin-VWF interaction offers exciting opportunities to develop novel adjunctive therapies for the treatment of refractory thrombotic thrombocytopenic purpura.
Asunto(s)
Fibrinolisina/metabolismo , Polisacáridos/metabolismo , Factor de von Willebrand/metabolismo , Sitios de Unión , Fibrinolisina/química , Heparina/metabolismo , Humanos , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteolisis , Estrés Mecánico , Relación Estructura-Actividad , Factores de Tiempo , Factor de von Willebrand/químicaRESUMEN
OBJECTIVE: Recent studies have demonstrated that galectin-1 (Gal-1) and galectin-3 (Gal-3) can bind von Willebrand factor and directly modulate von Willebrand factor-dependent early thrombus formation in vivo. Because the glycans expressed on human factor VIII (FVIII) are similar to those of von Willebrand factor, we investigated whether galectins might also bind and modulate the activity of FVIII. APPROACH AND RESULTS: Immunosorbant assays and surface plasmon resonance analysis confirmed that Gal-1 and Gal-3 bound purified FVIII with high affinity. Exoglycosidase removal of FVIII N-linked glycans significantly reduced binding to both Gal-1 and Gal-3. Moreover, combined removal of both the N- and O-glycans of FVIII further attenuated Gal-3 binding. Notably, specific digestion of FVIII high-mannose glycans at N239 and N2118 significantly impaired FVIII affinity for Gal-1. Importantly Gal-1, but not Gal-3, bound to free FVIII in the plasma milieu, and significantly inhibited FVIII functional activity. Interestingly, commercial recombinant FVIII (rFVIII) concentrates are manufactured in different cell lines and differ in their glycosylation profiles. Although the biological mechanism has not been defined, recent studies in previously untreated patients with severe hemophilia A reported significant differences in inhibitor development associated with different rFVIII products. Interestingly, Gal-1 and Gal-3 both displayed enhanced affinity for BHK-rFVIII compared with CHO-rFVIII. Furthermore, binding of Gal-1 and Gal-3 to BDD-FVIII was markedly reduced compared with full-length rFVIII. CONCLUSIONS: We have identified Gal-1 and Gal-3 as novel-binding partners for human FVIII and demonstrated that Gal-1 binding can influence the procoagulant activity of FVIII.
Asunto(s)
Factor VIII/metabolismo , Galectina 1/metabolismo , Galectina 3/metabolismo , Animales , Sitios de Unión , Coagulación Sanguínea , Proteínas Sanguíneas , Células CHO , Cricetulus , Factor VIII/química , Factor VIII/genética , Galectina 1/química , Galectina 3/química , Galectinas , Glicosilación , Humanos , Tiempo de Tromboplastina Parcial , Unión Proteica , Conformación Proteica , Proteínas Recombinantes/metabolismo , TransfecciónRESUMEN
BACKGROUND: von Willebrand factor (VWF)-R1205H variant (Vicenza) results in markedly enhanced VWF clearance in humans that has been shown to be largely macrophage-mediated. However, the biological mechanisms underlying this enhanced clearance remain poorly understood. OBJECTIVES: This study aimed to investigate the roles of (i) specific VWF domains and (ii) different macrophage receptors in regulating enhanced VWF-R1205H clearance. METHODS: In vivo clearance of full-length and truncated wild-type (WT)-VWF and VWF with R1205 substitutions was investigated in VWF-/- mice. Plate-binding assays were employed to characterize VWF binding to purified scavenger receptor class A member 1 (SR-AI), low-density lipoprotein receptor-related protein-1 (LRP1) cluster II or cluster IV receptors, and macrophage galactose-type lectin. RESULTS: In full-length VWF missing the A1 domain, introduction of R1205H led to significantly enhanced clearance in VWF-/- mice compared with WT-VWF missing the A1 domain. Importantly, R1205H in a truncated VWF-D'D3 fragment also triggered increased clearance compared with WT-VWF-D'D3. Additional in vivo studies demonstrated that VWF-R1205K (which preserves the positive charge at 1205) exhibited normal clearance, whereas VWF-R1205E (which results in loss of the positive charge) caused significantly enhanced clearance, pinpointing the importance of the positive charge at VWF-R1205. In vitro plate-binding studies confirmed increased VWF-R1205H interaction with SR-AI compared with WT-VWF. Furthermore, significantly enhanced VWF-R1205H binding to LRP1 cluster IV (P < .001) and less marked enhanced binding to LRP1 cluster II (P = .034) was observed. In contrast, VWF-R1205H and WT-VWF demonstrated no difference in binding affinity to macrophage galactose-type lectin. CONCLUSION: Disruption of the positive charge at amino acid R1205 causes conformational changes in the VWF-D'D3 domains and triggers enhanced LRP1-mediated and SR-AI-mediated clearance.
Asunto(s)
Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad , Unión Proteica , Dominios Proteicos , Factor de von Willebrand , Animales , Humanos , Ratones , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Conformación Proteica , Receptores Depuradores de Clase B , Factor de von Willebrand/metabolismoRESUMEN
The plasma multimeric glycoprotein von Willebrand factor (VWF) plays a critical role in primary hemostasis by tethering platelets to exposed collagen at sites of vascular injury. Recent studies have identified additional biological roles for VWF, and in particular suggest that VWF may play an important role in regulating inflammatory responses. However, the molecular mechanisms through which VWF exerts its immuno-modulatory effects remain poorly understood. In this study, we report that VWF binding to macrophages triggers downstream MAP kinase signaling, NF-κB activation and production of pro-inflammatory cytokines and chemokines. In addition, VWF binding also drives macrophage M1 polarization and shifts macrophage metabolism towards glycolysis in a p38-dependent manner. Cumulatively, our findings define an important biological role for VWF in modulating macrophage function, and thereby establish a novel link between primary hemostasis and innate immunity.
Asunto(s)
Hemostasis , Factor de von Willebrand , Factor de von Willebrand/metabolismo , Hemostasis/fisiología , Plaquetas/metabolismo , Inmunidad Innata , Macrófagos/metabolismoRESUMEN
ADAMTS13 metalloprotease regulates the multimeric size of von Willebrand factor (VWF) by cleaving the Tyr1605-Met1606 bond in the VWF A2 domain. The mechanisms of VWF recognition by ADAMTS13 have yet to be fully resolved. Most studies have focused on the role of exosites within the VWF A2 domain, involved in interaction with the ADAMTS13 spacer domain. In the present study, we expressed different C-terminal domain VWF fragments and evaluated their binding to ADAMTS13 and its truncated mutants, MDTCS and del(TSP5-CUB). Using plate binding assay and surface plasmon resonance, we identified a novel ADAMTS13 binding site (K(D) approximately 86 nM) in the region of VWF spanning residues 1874 to 2813, which includes the VWF D4 domain and that interacts with the C-terminal domains of ADAMTS13. We show that the interaction occurs even when VWF is in static conditions, assumed to be globular and where the VWF A2 domain is hidden. We demonstrate that C-terminal VWF fragments, as well as an antibody specifically directed toward the VWF D4 domain, inhibit VWF proteolysis by ADAMTS13 under shear conditions. We propose that this novel VWF C-terminal binding site may participate as the initial step of a multistep interaction ultimately leading to proteolysis of VWF by ADAMTS13.
Asunto(s)
Proteínas ADAM/metabolismo , Pliegue de Proteína , Factor de von Willebrand/química , Factor de von Willebrand/metabolismo , Proteínas ADAM/química , Proteína ADAMTS13 , Sitios de Unión , Células Cultivadas , Humanos , Modelos Biológicos , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Unión Proteica , Mapeo de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , Estructura Terciaria de Proteína/fisiología , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismoRESUMEN
BACKGROUND: Von Willebrand factor (VWF) contains a number of free thiols, the majority of which are located in its C-domains, and these have been shown to alter VWF function, However, the impact of free thiols on function following acute exposure of VWF to collagen under high and pathological shear stress has not been determined. METHODS: VWF free thiols were blocked with N-ethylmaleimide and flow assays performed under high and pathological shear rates to determine the impact on platelet capture and collagen binding function. Atomic force microscopy (AFM) was used to probe the interaction of VWF with collagen and molecular simulations conducted to determine the effect of free thiols on the flexibility of the VWF-C4 domain. RESULTS: Blockade of VWF free thiols reduced VWF-mediated platelet capture to collagen in a shear-dependent manner, with platelet capture virtually abolished above 5000 s-1 and in regions of stenosis in microfluidic channels. Direct visualization of VWF fibers formed under extreme pathological shear rates and analysis of collagen-bound VWF attributed the effect to altered binding of VWF to collagen. AFM measurements showed that thiol-blockade reduced the lifetime and strength of the VWF-collagen bond. Pulling simulations of the VWF-C4 domain demonstrated that with one or two reduced disulphide bonds the C4 domain has increased flexibility and the propensity to undergo free-thiol exchange. CONCLUSIONS: We conclude that free thiols in the C-domains of VWF enhance the flexibility of the molecule and enable it to withstand high shear forces following collagen binding, demonstrating a previously unrecognized role for VWF free thiols.
Asunto(s)
Compuestos de Sulfhidrilo , Factor de von Willebrand , Plaquetas/metabolismo , Colágeno/metabolismo , Humanos , Adhesividad Plaquetaria , Unión Proteica , Estrés Mecánico , Factor de von Willebrand/metabolismoRESUMEN
BACKGROUND: Previous studies have demonstrated that the A1A2A3 domains of von Willebrand factor (VWF) play a key role in regulating macrophage-mediated clearance in vivo. In particular, the A1-domain has been shown to modulate interaction with macrophage low-density lipoprotein receptor-related protein-1 (LRP1) clearance receptor. Furthermore, N-linked glycans within the A2-domain have been shown to protect VWF against premature LRP1-mediated clearance. Importantly, however, the specific regions within A1A2A3 that enable macrophage binding have not been defined. OBJECTIVE AND METHODS: To address this, we utilized site-directed PEGylation and introduced novel targeted N-linked glycosylation within A1A2A3-VWF and subsequently examined VWF clearance. RESULTS: Conjugation with a 40-kDa polyethylene glycol (PEG) moiety significantly extended the half-life of A1A2A3-VWF in VWF-/- mice in a site-specific manner. For example, PEGylation at specific sites within the A1-domain (S1286) and A3-domain (V1803, S1807) attenuated VWF clearance in vivo, compared to wild-type A1A2A3-VWF. Furthermore, PEGylation at these specific sites ablated binding to differentiated THP-1 macrophages and LRP1 cluster II and cluster IV in-vitro. Conversely, PEGylation at other positions (Q1353-A1-domain and M1545-A2-domain) had limited effects on VWF clearance or binding to LRP1.Novel N-linked glycan chains were introduced at N1803 and N1807 in the A3-domain. In contrast to PEGylation at these sites, no significant extension in half-life was observed with these N-glycan variants. CONCLUSIONS: These novel data demonstrate that site specific PEGylation but not site specific N-glycosylation modifies LRP1-dependent uptake of the A1A2A3-VWF by macrophages. This suggests that PEGylation, within the A1- and A3-domains in particular, may be used to attenuate LRP1-mediated clearance of VWF.
Asunto(s)
Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad , Factor de von Willebrand , Animales , Glicosilación , Cinética , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Ratones , Polisacáridos , Unión Proteica , Factor de von Willebrand/metabolismoRESUMEN
Adherence of infected erythrocytes to vascular endothelium causes acute endothelial cell (EC) activation during Plasmodium falciparum infection. Consequently, proteins stored in Weibel-Palade (WP) bodies within EC are secreted into the plasma. Osteoprotegerin (OPG) binds to VWF and consequently is stored within WP bodies. Given the critical role of EC activation in the pathogenesis of severe malaria, we investigated plasma OPG levels in children with P. falciparum malaria. At presentation, plasma OPG levels were significantly elevated in children with cerebral malaria (CM) compared to healthy controls (means 16.0 vs 0.8 ng/ml; p< 0.01). Importantly, OPG levels were also significantly higher in children with CM who had a fatal outcome, compared to children with CM who survived. Finally, in children with CM, plasma OPG levels correlated with other established prognostic indices (including plasma lactate levels and peripheral parasite density). To further investigate the relationship between severe malaria and OPG, we utilised a murine model of experimental CM in which C57BL/6J mice were infected with P. berghei ANKA. Interestingly, plasma OPG levels were increased 4.6 fold within 24 hours following P. berghei inoculation. This early marked elevation in OPG levels was observed before any objective clinical signs were apparent, and preceded the development of peripheral blood parasitaemia. As the mice became increasingly unwell, plasma OPG levels progressively increased. Collectively, these data suggest that OPG constitutes a novel biomarker with prognostic significance in patients with severe malaria. In addition, further studies are required to determine whether OPG plays a role in modulating malaria pathogenesis.
Asunto(s)
Biomarcadores/sangre , Endotelio Vascular/fisiología , Eritrocitos/parasitología , Malaria Cerebral/diagnóstico , Plasmodium berghei/inmunología , Plasmodium falciparum , Animales , Niño , Preescolar , Eritrocitos/fisiología , Femenino , Humanos , Malaria Cerebral/mortalidad , Masculino , Ratones , Ratones Endogámicos C57BL , Pronóstico , Análisis de SupervivenciaRESUMEN
We examined the role of N-linked glycan structures of VWF on its interaction with ADAMTS13. PNGase F digestion followed by lectin analysis demonstrated that more than 90% of VWF N-linked glycan chains could be removed from the molecule (PNG-VWF) without disruption of its multimeric structure or its ability to bind to collagen. PNG-VWF had an approximately 4-fold increased affinity for ADAMTS13 compared with control VWF. PNG-VWF was cleaved by ADAMTS13 faster than control VWF and was also proteolysed in the absence of urea. Occupancy of the N-linked glycan sites at N1515 and N1574 and their presentation of ABO(H) blood group sugars were confirmed with an isolated tryptic fragment. Recombinant VWF was mutated to prevent glycosylation at these sites. Mutation of N1515 did not alter ADAMTS13 binding or increase rate of ADAMTS13 proteolysis. Mutation of N1574 increased the susceptibility of VWF to ADAMTS13 proteolysis and allowed cleavage in the absence of urea. Mutation of N1574 in the isolated recombinant VWF-A2 domain also increased binding and ADAMTS13 proteolysis. These data demonstrate that the N-linked glycans of VWF have a modulatory effect on the interaction with ADAMTS13. At least part of this effect is conformational, but steric hindrance may also be important.
Asunto(s)
Proteínas ADAM/metabolismo , Factor de von Willebrand/metabolismo , Proteínas ADAM/genética , Línea Celular , Colágeno/metabolismo , Glicosilación , Humanos , Modelos Moleculares , Mutación/genética , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Factor de von Willebrand/química , Factor de von Willebrand/genéticaRESUMEN
Immunoglobulin G (IgG) anti-thrombin autoantibodies (ATA) were purified from the plasma of a patient referred for haematological investigation because of bleeding for 24 h following a dental extraction. The ATA did not inhibit the catalytic activity of thrombin against a chromogenic substrate, suggesting that they did not interact with the active site of thrombin. The ATA did, however, prolong the time required to generate thrombin in plasma, suggesting that they inhibited factor V and factor VIII activation. Surface plasmon resonance (SPR) was used to demonstrate that ATA bound to thrombin with high affinity. Competition of thrombin-ATA binding, using known thrombin exosite I and II ligands (hirudin, thrombomodulin and heparin), demonstrated that ATA bound to both thrombin exosites. Thrombin residues that are important for ATA binding were identified using a library of 53 recombinant thrombin variants encompassing alanine substitutions of 78 surface-exposed residues. They were H66, R68, R70 and Y71 in exosite I, and R89, R93, E94, R98, R245 and K248 in exosite II. ATA bound predominantly to exosite II. They did not bind to prothrombin, illustrating the cryptic nature of both exosites exposed and presented as potential antigens following prothrombin conversion to thrombin.