Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Mol Cell ; 81(16): 3400-3409.e3, 2021 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-34352203

RESUMEN

Non-homologous end joining (NHEJ) is one of two critical mechanisms utilized in humans to repair DNA double-strand breaks (DSBs). Unrepaired or incorrect repair of DSBs can lead to apoptosis or cancer. NHEJ involves several proteins, including the Ku70/80 heterodimer, DNA-dependent protein kinase catalytic subunit (DNA-PKcs), X-ray cross-complementing protein 4 (XRCC4), XRCC4-like factor (XLF), and ligase IV. These core proteins bind DSBs and ligate the damaged DNA ends. However, details of the structural assembly of these proteins remain unclear. Here, we present cryo-EM structures of NHEJ supercomplexes that are composed of these core proteins and DNA, revealing the detailed structural architecture of this assembly. We describe monomeric and dimeric forms of this supercomplex and also propose the existence of alternate dimeric forms of long-range synaptic complexes. Finally, we show that mutational disruption of several structural features within these NHEJ complexes negatively affects DNA repair.


Asunto(s)
ADN Ligasa (ATP)/ultraestructura , Enzimas Reparadoras del ADN/ultraestructura , Proteína Quinasa Activada por ADN/ultraestructura , Proteínas de Unión al ADN/ultraestructura , Complejos Multiproteicos/ultraestructura , Apoptosis/genética , Microscopía por Crioelectrón , Roturas del ADN de Doble Cadena , Daño del ADN/genética , Reparación del ADN por Unión de Extremidades/genética , ADN Ligasa (ATP)/genética , Reparación del ADN/genética , Enzimas Reparadoras del ADN/genética , Proteína Quinasa Activada por ADN/genética , Proteínas de Unión al ADN/genética , Humanos , Autoantígeno Ku/genética , Autoantígeno Ku/ultraestructura , Complejos Multiproteicos/genética , Fosforilación/genética
2.
Nature ; 601(7894): 643-648, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34987222

RESUMEN

The DNA-dependent protein kinase catalytic subunit (DNA-PKcs) has a central role in non-homologous end joining, one of the two main pathways that detect and repair DNA double-strand breaks (DSBs) in humans1,2. DNA-PKcs is of great importance in repairing pathological DSBs, making DNA-PKcs inhibitors attractive therapeutic agents for cancer in combination with DSB-inducing radiotherapy and chemotherapy3. Many of the selective inhibitors of DNA-PKcs that have been developed exhibit potential as treatment for various cancers4. Here we report cryo-electron microscopy (cryo-EM) structures of human DNA-PKcs natively purified from HeLa cell nuclear extracts, in complex with adenosine-5'-(γ-thio)-triphosphate (ATPγS) and four inhibitors (wortmannin, NU7441, AZD7648 and M3814), including drug candidates undergoing clinical trials. The structures reveal molecular details of ATP binding at the active site before catalysis and provide insights into the modes of action and specificities of the competitive inhibitors. Of note, binding of the ligands causes movement of the PIKK regulatory domain (PRD), revealing a connection between the p-loop and PRD conformations. Electrophoretic mobility shift assay and cryo-EM studies on the DNA-dependent protein kinase holoenzyme further show that ligand binding does not have a negative allosteric or inhibitory effect on assembly of the holoenzyme complex and that inhibitors function through direct competition with ATP. Overall, the structures described in this study should greatly assist future efforts in rational drug design targeting DNA-PKcs, demonstrating the potential of cryo-EM in structure-guided drug development for large and challenging targets.


Asunto(s)
Reparación del ADN por Unión de Extremidades , Proteína Quinasa Activada por ADN , Adenosina Trifosfato , Dominio Catalítico , Microscopía por Crioelectrón , ADN/metabolismo , Reparación del ADN , Proteína Quinasa Activada por ADN/metabolismo , Células HeLa , Holoenzimas/metabolismo , Humanos , Autoantígeno Ku/metabolismo , Piridazinas , Quinazolinas
3.
Nature ; 602(7897): 529-533, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35140402

RESUMEN

Type A GABA (γ-aminobutyric acid) receptors represent a diverse population in the mammalian brain, forming pentamers from combinations of α-, ß-, γ-, δ-, ε-, ρ-, θ- and π-subunits1. αß, α4ßδ, α6ßδ and α5ßγ receptors favour extrasynaptic localization, and mediate an essential persistent (tonic) inhibitory conductance in many regions of the mammalian brain1,2. Mutations of these receptors in humans are linked to epilepsy and insomnia3,4. Altered extrasynaptic receptor function is implicated in insomnia, stroke and Angelman and Fragile X syndromes1,5, and drugs targeting these receptors are used to treat postpartum depression6. Tonic GABAergic responses are moderated to avoid excessive suppression of neuronal communication, and can exhibit high sensitivity to Zn2+ blockade, in contrast to synapse-preferring α1ßγ, α2ßγ and α3ßγ receptor responses5,7-12. Here, to resolve these distinctive features, we determined structures of the predominantly extrasynaptic αß GABAA receptor class. An inhibited state bound by both the lethal paralysing agent α-cobratoxin13 and Zn2+ was used in comparisons with GABA-Zn2+ and GABA-bound structures. Zn2+ nullifies the GABA response by non-competitively plugging the extracellular end of the pore to block chloride conductance. In the absence of Zn2+, the GABA signalling response initially follows the canonical route until it reaches the pore. In contrast to synaptic GABAA receptors, expansion of the midway pore activation gate is limited and it remains closed, reflecting the intrinsic low efficacy that characterizes the extrasynaptic receptor. Overall, this study explains distinct traits adopted by αß receptors that adapt them to a role in tonic signalling.


Asunto(s)
Agonistas de Receptores de GABA-A , Antagonistas de Receptores de GABA-A , Receptores de GABA-A , Animales , Proteínas Neurotóxicas de Elápidos , Agonistas de Receptores de GABA-A/farmacología , Antagonistas de Receptores de GABA-A/farmacología , Humanos , Mamíferos/metabolismo , Inhibición Neural/fisiología , Neuronas/metabolismo , Receptores de GABA-A/metabolismo , Sinapsis/metabolismo , Zinc , Ácido gamma-Aminobutírico/metabolismo
4.
Nature ; 604(7904): 190-194, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35355020

RESUMEN

Type A γ-aminobutyric acid receptors (GABAARs) are pentameric ligand-gated chloride channels that mediate fast inhibitory signalling in neural circuits1,2 and can be modulated by essential medicines including general anaesthetics and benzodiazepines3. Human GABAAR subunits are encoded by 19 paralogous genes that can, in theory, give rise to 495,235 receptor types. However, the principles that govern the formation of pentamers, the permutational landscape of receptors that may emerge from a subunit set and the effect that this has on GABAergic signalling remain largely unknown. Here we use cryogenic electron microscopy to determine the structures of extrasynaptic GABAARs assembled from α4, ß3 and δ subunits, and their counterparts incorporating γ2 instead of δ subunits. In each case, we identified two receptor subtypes with distinct stoichiometries and arrangements, all four differing from those previously observed for synaptic, α1-containing receptors4-7. This, in turn, affects receptor responses to physiological and synthetic modulators by creating or eliminating ligand-binding sites at subunit interfaces. We provide structural and functional evidence that selected GABAAR arrangements can act as coincidence detectors, simultaneously responding to two neurotransmitters: GABA and histamine. Using assembly simulations and single-cell RNA sequencing data8,9, we calculated the upper bounds for receptor diversity in recombinant systems and in vivo. We propose that differential assembly is a pervasive mechanism for regulating the physiology and pharmacology of GABAARs.


Asunto(s)
Benzodiazepinas , Receptores de GABA-A , Transducción de Señal , Benzodiazepinas/farmacología , Sitios de Unión , Microscopía por Crioelectrón , Histamina/metabolismo , Humanos , Ligandos , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , RNA-Seq , Receptores de GABA-A/química , Receptores de GABA-A/metabolismo , Receptores de GABA-A/ultraestructura , Análisis de la Célula Individual , Ácido gamma-Aminobutírico/metabolismo
5.
EMBO J ; 42(2): e112574, 2023 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-36504162

RESUMEN

Biogenesis of the essential precursor of the bacterial cell envelope, glucosamine-6-phosphate (GlcN6P), is controlled by intricate post-transcriptional networks mediated by GlmZ, a small regulatory RNA (sRNA). GlmZ stimulates translation of the mRNA encoding GlcN6P synthtase in Escherichia coli, but when bound by RapZ protein, the sRNA becomes inactivated through cleavage by the endoribonuclease RNase E. Here, we report the cryoEM structure of the RapZ:GlmZ complex, revealing a complementary match of the RapZ tetrameric quaternary structure to structural repeats in the sRNA. The nucleic acid is contacted by RapZ mostly through a highly conserved domain that shares an evolutionary relationship with phosphofructokinase and suggests links between metabolism and riboregulation. We also present the structure of a precleavage intermediate formed between the binary RapZ:GlmZ complex and RNase E that reveals how GlmZ is presented and recognised by the enzyme. The structures provide a framework for understanding how other encounter complexes might guide recognition and action of endoribonucleases on target transcripts, and how structured substrates in polycistronic precursors may be recognised for processing by RNase E.


Asunto(s)
Proteínas de Escherichia coli , ARN Pequeño no Traducido , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Ribonucleoproteínas/genética , ARN Bacteriano/metabolismo , ARN Pequeño no Traducido/genética
6.
Nature ; 587(7832): 152-156, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33087931

RESUMEN

The three-dimensional positions of atoms in protein molecules define their structure and their roles in biological processes. The more precisely atomic coordinates are determined, the more chemical information can be derived and the more mechanistic insights into protein function may be inferred. Electron cryo-microscopy (cryo-EM) single-particle analysis has yielded protein structures with increasing levels of detail in recent years1,2. However, it has proved difficult to obtain cryo-EM reconstructions with sufficient resolution to visualize individual atoms in proteins. Here we use a new electron source, energy filter and camera to obtain a 1.7 Å resolution cryo-EM reconstruction for a human membrane protein, the ß3 GABAA receptor homopentamer3. Such maps allow a detailed understanding of small-molecule coordination, visualization of solvent molecules and alternative conformations for multiple amino acids, and unambiguous building of ordered acidic side chains and glycans. Applied to mouse apoferritin, our strategy led to a 1.22 Å resolution reconstruction that offers a genuine atomic-resolution view of a protein molecule using single-particle cryo-EM. Moreover, the scattering potential from many hydrogen atoms can be visualized in difference maps, allowing a direct analysis of hydrogen-bonding networks. Our technological advances, combined with further approaches to accelerate data acquisition and improve sample quality, provide a route towards routine application of cryo-EM in high-throughput screening of small molecule modulators and structure-based drug discovery.


Asunto(s)
Apoferritinas/química , Apoferritinas/ultraestructura , Microscopía por Crioelectrón/instrumentación , Microscopía por Crioelectrón/métodos , Receptores de GABA-A/química , Receptores de GABA-A/ultraestructura , Imagen Individual de Molécula/métodos , Animales , Microscopía por Crioelectrón/normas , Descubrimiento de Drogas , Humanos , Ratones , Modelos Moleculares , Polisacáridos/química , Polisacáridos/ultraestructura , Imagen Individual de Molécula/normas
7.
Nucleic Acids Res ; 51(21): 11732-11747, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-37870477

RESUMEN

The classical Non-Homologous End Joining (c-NHEJ) pathway is the predominant process in mammals for repairing endogenous, accidental or programmed DNA Double-Strand Breaks. c-NHEJ is regulated by several accessory factors, post-translational modifications, endogenous chemical agents and metabolites. The metabolite inositol-hexaphosphate (IP6) stimulates c-NHEJ by interacting with the Ku70-Ku80 heterodimer (Ku). We report cryo-EM structures of apo- and DNA-bound Ku in complex with IP6, at 3.5 Å and 2.74 Å resolutions respectively, and an X-ray crystallography structure of a Ku in complex with DNA and IP6 at 3.7 Å. The Ku-IP6 interaction is mediated predominantly via salt bridges at the interface of the Ku70 and Ku80 subunits. This interaction is distant from the DNA, DNA-PKcs, APLF and PAXX binding sites and in close proximity to XLF binding site. Biophysical experiments show that IP6 binding increases the thermal stability of Ku by 2°C in a DNA-dependent manner, stabilizes Ku on DNA and enhances XLF affinity for Ku. In cells, selected mutagenesis of the IP6 binding pocket reduces both Ku accrual at damaged sites and XLF enrolment in the NHEJ complex, which translate into a lower end-joining efficiency. Thus, this study defines the molecular bases of the IP6 metabolite stimulatory effect on the c-NHEJ repair activity.


Asunto(s)
Proteínas de Unión al ADN , Ácido Fítico , Animales , ADN/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Proteínas de Unión al ADN/genética , Autoantígeno Ku/metabolismo , Mamíferos/genética , Humanos
8.
Proc Natl Acad Sci U S A ; 119(14): e2116708119, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35357971

RESUMEN

Iron surface determinant B (IsdB) is a hemoglobin (Hb) receptor essential for hemic iron acquisition by Staphylococcus aureus. Heme transfer to IsdB is possible from oxidized Hb (metHb), but inefficient from Hb either bound to oxygen (oxyHb) or bound to carbon monoxide (HbCO), and encompasses a sequence of structural events that are currently poorly understood. By single-particle cryo-electron microscopy, we determined the structure of two IsdB:Hb complexes, representing key species along the heme extraction pathway. The IsdB:HbCO structure, at 2.9-Å resolution, provides a snapshot of the preextraction complex. In this early stage of IsdB:Hb interaction, the hemophore binds to the ß-subunits of the Hb tetramer, exploiting a folding-upon-binding mechanism that is likely triggered by a cis/trans isomerization of Pro173. Binding of IsdB to α-subunits occurs upon dissociation of the Hb tetramer into α/ß dimers. The structure of the IsdB:metHb complex reveals the final step of the extraction process, where heme transfer to IsdB is completed. The stability of the complex, both before and after heme transfer from Hb to IsdB, is influenced by isomerization of Pro173. These results greatly enhance current understanding of structural and dynamic aspects of the heme extraction mechanism by IsdB and provide insight into the interactions that stabilize the complex before the heme transfer event. This information will support future efforts to identify inhibitors of heme acquisition by S. aureus by interfering with IsdB:Hb complex formation.


Asunto(s)
Proteínas de Transporte de Catión , Hemo , Hemoglobinas , Proteínas de Transporte de Catión/química , Microscopía por Crioelectrón , Hemo/química , Hemoglobinas/química , Humanos , Hierro/metabolismo
10.
Nucleic Acids Res ; 48(12): 6980-6995, 2020 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-32453425

RESUMEN

DNA unwinding in eukaryotic replication is performed by the Cdc45-MCM-GINS (CMG) helicase. Although the CMG architecture has been elucidated, its mechanism of DNA unwinding and replisome interactions remain poorly understood. Here we report the cryoEM structure at 3.3 Å of human CMG bound to fork DNA and the ATP-analogue ATPγS. Eleven nucleotides of single-stranded (ss) DNA are bound within the C-tier of MCM2-7 AAA+ ATPase domains. All MCM subunits contact DNA, from MCM2 at the 5'-end to MCM5 at the 3'-end of the DNA spiral, but only MCM6, 4, 7 and 3 make a full set of interactions. DNA binding correlates with nucleotide occupancy: five MCM subunits are bound to either ATPγS or ADP, whereas the apo MCM2-5 interface remains open. We further report the cryoEM structure of human CMG bound to the replisome hub AND-1 (CMGA). The AND-1 trimer uses one ß-propeller domain of its trimerisation region to dock onto the side of the helicase assembly formed by Cdc45 and GINS. In the resulting CMGA architecture, the AND-1 trimer is closely positioned to the fork DNA while its CIP (Ctf4-interacting peptide)-binding helical domains remain available to recruit partner proteins.


Asunto(s)
Proteínas de Ciclo Celular/ultraestructura , ADN/ultraestructura , Proteínas de Mantenimiento de Minicromosoma/ultraestructura , Complejos Multiproteicos/ultraestructura , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/ultraestructura , Adenosina Trifosfato/análogos & derivados , Adenosina Trifosfato/química , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Microscopía por Crioelectrón , Cristalografía por Rayos X , ADN Helicasas/química , ADN Helicasas/genética , ADN Helicasas/ultraestructura , Replicación del ADN/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/ultraestructura , Humanos , Proteínas de Mantenimiento de Minicromosoma/química , Proteínas de Mantenimiento de Minicromosoma/genética , Modelos Moleculares , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Conformación de Ácido Nucleico , Conformación Proteica
11.
J Biol Chem ; 293(37): 14260-14269, 2018 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-30030382

RESUMEN

The glyoxylate shunt bypasses the oxidative decarboxylation steps of the tricarboxylic acid (TCA) cycle, thereby conserving carbon skeletons for gluconeogenesis and biomass production. In Escherichia coli, carbon flux is redirected through the first enzyme of the glyoxylate shunt, isocitrate lyase (ICL), following phosphorylation and inactivation of the TCA cycle enzyme, isocitrate dehydrogenase (ICD), by the kinase/phosphatase, AceK. In contrast, mycobacterial species lack AceK and employ a phosphorylation-insensitive isocitrate dehydrogenase (IDH), which is allosterically activated by the product of ICL activity, glyoxylate. However, Pseudomonas aeruginosa expresses IDH, ICD, ICL, and AceK, raising the question of how these enzymes are regulated to ensure proper flux distribution between the competing pathways. Here, we present the structure, kinetics, and regulation of ICL, IDH, and ICD from P. aeruginosa We found that flux partitioning is coordinated through reciprocal regulation of these enzymes, linking distribution of carbon flux to the availability of the key gluconeogenic precursors, oxaloacetate and pyruvate. Specifically, a greater abundance of these metabolites activated IDH and inhibited ICL, leading to increased TCA cycle flux. Regulation was also exerted through AceK-dependent phosphorylation of ICD; high levels of acetyl-CoA (which would be expected to accumulate when oxaloacetate is limiting) stimulated the kinase activity of AceK, whereas high levels of oxaloacetate stimulated its phosphatase activity. In summary, the TCA cycle-glyoxylate shunt branch point in P. aeruginosa has a complex enzymology that is profoundly different from those in other species characterized to date. Presumably, this reflects its predilection for consuming fatty acids, especially during infection scenarios.


Asunto(s)
Gluconeogénesis , Glioxilatos/metabolismo , Isocitratoliasa/metabolismo , Pseudomonas aeruginosa/metabolismo , Acetilcoenzima A/metabolismo , Ciclo del Ácido Cítrico , Cristalografía por Rayos X , Descarboxilación , Escherichia coli/metabolismo , Isocitrato Deshidrogenasa/antagonistas & inhibidores , Isocitrato Deshidrogenasa/química , Isocitrato Deshidrogenasa/metabolismo , Isocitratoliasa/antagonistas & inhibidores , Isocitratoliasa/química , Cinética , Ácido Oxaloacético/metabolismo , Fosforilación , Pseudomonas aeruginosa/enzimología
12.
Blood ; 127(5): 529-37, 2016 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-26552697

RESUMEN

The osteoclast-associated receptor (OSCAR) is a collagen-binding immune receptor with important roles in dendritic cell maturation and activation of inflammatory monocytes as well as in osteoclastogenesis. The crystal structure of the OSCAR ectodomain is presented, both free and in complex with a consensus triple-helical peptide (THP). The structures revealed a collagen-binding site in each immunoglobulin-like domain (D1 and D2). The THP binds near a predicted collagen-binding groove in D1, but a more extensive interaction with D2 is facilitated by the unusually wide D1-D2 interdomain angle in OSCAR. Direct binding assays, combined with site-directed mutagenesis, confirm that the primary collagen-binding site in OSCAR resides in D2, in marked contrast to the related collagen receptors, glycoprotein VI (GPVI) and leukocyte-associated immunoglobulin-like receptor-1 (LAIR-1). Monomeric OSCAR D1D2 binds to the consensus THP with a KD of 28 µM measured in solution, but shows a higher affinity (KD 1.5 µM) when binding to a solid-phase THP, most likely due to an avidity effect. These data suggest a 2-stage model for the interaction of OSCAR with a collagen fibril, with transient, low-affinity interactions initiated by the membrane-distal D1, followed by firm adhesion to the primary binding site in D2.


Asunto(s)
Colágeno/metabolismo , Receptores de Superficie Celular/química , Receptores de Superficie Celular/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Colágeno/química , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Glicoproteínas de Membrana Plaquetaria/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Receptores Inmunológicos/metabolismo
13.
Biochemistry ; 56(25): 3225-3233, 2017 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-28493669

RESUMEN

The propensity to misfold and self-assemble into stable aggregates is increasingly being recognized as a common feature of protein molecules. Our understanding of this phenomenon and of its links with human disease has improved substantially over the past two decades. Studies thus far, however, have been almost exclusively focused on cytosolic proteins, resulting in a lack of detailed information about the misfolding and aggregation of membrane proteins. As a consequence, although such proteins make up approximately 30% of the human proteome and have high propensities to aggregate, relatively little is known about the biophysical nature of their assemblies. To shed light on this issue, we have studied as a model system an archetypical representative of the ubiquitous major facilitator superfamily, the Escherichia coli lactose permease (LacY). By using a combination of established indicators of cross-ß structure and morphology, including the amyloid diagnostic dye thioflavin-T, circular dichroism spectroscopy, Fourier transform infrared spectroscopy, X-ray fiber diffraction, and transmission electron microscopy, we show that LacY can form amyloid-like fibrils under destabilizing conditions. These results indicate that transmembrane α-helical proteins, similarly to cytosolic proteins, have the ability to adopt this generic state.


Asunto(s)
Amiloide/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimología , Proteínas de Transporte de Monosacáridos/química , Simportadores/química , Tiazoles/química , Benzotiazoles , Dicroismo Circular , Humanos , Microscopía Electrónica de Transmisión , Conformación Proteica en Hélice alfa , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
14.
Proteins ; 84(11): 1681-1689, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27488615

RESUMEN

Clostridium perfringens spores employ two peptidoglycan lysins to degrade the spore cortex during germination. SleC initiates cortex hydrolysis to generate cortical fragments that are degraded further by the muramidase SleM. Here, we present the crystal structure of the C. perfringens S40 SleM protein at 1.8 Å. SleM comprises an N-terminal catalytic domain that adopts an irregular α/ß-barrel fold that is common to GH25 family lysozymes, plus a C-terminal fibronectin type III domain. The latter is involved in forming the SleM dimer that is evident in both the crystal structure and in solution. A truncated form of SleM that lacks the FnIII domain shows reduced activity against spore sacculi indicating that this domain may have a role in facilitating the position of substrate with respect to the enzyme's active site. Proteins 2016; 84:1681-1689. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Proteínas Bacterianas/química , Clostridium perfringens/química , Muramidasa/química , Peptidoglicano/química , Esporas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Clonación Molecular , Clostridium perfringens/enzimología , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Dominio de Fibronectina del Tipo III , Expresión Génica , Hidrólisis , Modelos Moleculares , Muramidasa/genética , Muramidasa/metabolismo , Multimerización de Proteína , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
15.
Nature ; 463(7277): 118-21, 2010 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-20023628

RESUMEN

Broken chromosomes arising from DNA double-strand breaks result from endogenous events such as the production of reactive oxygen species during cellular metabolism, as well as from exogenous sources such as ionizing radiation. Left unrepaired or incorrectly repaired they can lead to genomic changes that may result in cell death or cancer. DNA-dependent protein kinase (DNA-PK), a holoenzyme that comprises the DNA-PK catalytic subunit (DNA-PKcs) and the heterodimer Ku70/Ku80, has a major role in non-homologous end joining-the main pathway in mammals used to repair double-strand breaks. DNA-PKcs is a serine/threonine protein kinase comprising a single polypeptide chain of 4,128 amino acids and belonging to the phosphatidylinositol-3-OH kinase (PI(3)K)-related protein family. DNA-PKcs is involved in the sensing and transmission of DNA damage signals to proteins such as p53, setting off events that lead to cell cycle arrest. It phosphorylates a wide range of substrates in vitro, including Ku70/Ku80, which is translocated along DNA. Here we present the crystal structure of human DNA-PKcs at 6.6 A resolution, in which the overall fold is clearly visible, to our knowledge, for the first time. The many alpha-helical HEAT repeats (helix-turn-helix motifs) facilitate bending and allow the polypeptide chain to fold into a hollow circular structure. The carboxy-terminal kinase domain is located on top of this structure, and a small HEAT repeat domain that probably binds DNA is inside. The structure provides a flexible cradle to promote DNA double-strand-break repair.


Asunto(s)
Proteína Quinasa Activada por ADN/química , Secuencias Hélice-Giro-Hélice , Proteínas Nucleares/química , Antígenos Nucleares/química , Dominio Catalítico , Cristalografía por Rayos X , ADN/metabolismo , Roturas del ADN de Doble Cadena , Proteína Quinasa Activada por ADN/metabolismo , Proteínas de Unión al ADN/química , Células HeLa , Humanos , Autoantígeno Ku , Modelos Moleculares , Proteínas Nucleares/metabolismo , Pliegue de Proteína , Estructura Secundaria de Proteína
16.
J Biol Chem ; 289(15): 10797-10811, 2014 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-24567321

RESUMEN

The vertebrate sodium (Nav) channel is composed of an ion-conducting α subunit and associated ß subunits. Here, we report the crystal structure of the human ß3 subunit immunoglobulin (Ig) domain, a functionally important component of Nav channels in neurons and cardiomyocytes. Surprisingly, we found that the ß3 subunit Ig domain assembles as a trimer in the crystal asymmetric unit. Analytical ultracentrifugation confirmed the presence of Ig domain monomers, dimers, and trimers in free solution, and atomic force microscopy imaging also detected full-length ß3 subunit monomers, dimers, and trimers. Mutation of a cysteine residue critical for maintaining the trimer interface destabilized both dimers and trimers. Using fluorescence photoactivated localization microscopy, we detected full-length ß3 subunit trimers on the plasma membrane of transfected HEK293 cells. We further show that ß3 subunits can bind to more than one site on the Nav 1.5 α subunit and induce the formation of α subunit oligomers, including trimers. Our results suggest a new and unexpected role for the ß3 subunits in Nav channel cross-linking and provide new structural insights into some pathological Nav channel mutations.


Asunto(s)
Subunidad beta-3 de Canal de Sodio Activado por Voltaje/química , Secuencia de Aminoácidos , Sitios de Unión , Clonación Molecular , Cristalización , Cristalografía por Rayos X , Dimerización , Células HEK293 , Humanos , Inmunoglobulinas/química , Microscopía de Fuerza Atómica , Datos de Secuencia Molecular , Canal de Sodio Activado por Voltaje NAV1.5/química , Conformación Proteica , Ultracentrifugación
17.
Proteins ; 83(10): 1914-21, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26219275

RESUMEN

The crystal structure of the C-terminal domain of the Bacillus megaterium YpeB protein has been solved by X-ray crystallography to 1.80-Å resolution. The full-length protein is essential in stabilising the SleB cortex lytic enzyme in Bacillus spores, and may have a role in regulating SleB activity during spore germination. The YpeB-C crystal structure comprises three tandemly repeated PepSY domains, which are aligned to form an extended laterally compressed molecule. A predominantly positively charged region located in the second PepSY domain may provide a site for protein interactions that are important in stabilising SleB and YpeB within the spore.


Asunto(s)
Bacillus megaterium/enzimología , Proteínas Bacterianas/química , Esporas Bacterianas/enzimología , Secuencia de Aminoácidos , Cristalografía por Rayos X , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Terciaria de Proteína
18.
Proteins ; 83(10): 1787-99, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26190134

RESUMEN

A major event in the germination of Bacillus spores concerns hydrolysis of the cortical peptidoglycan that surrounds the spore protoplast, the integrity of which is essential for maintenance of dormancy. Cortex degradation is initiated in all species of Bacillus spores by the combined activity of two semi-redundant cortex-lytic enzymes, SleB and CwlJ. A third enzyme, SleL, which has N-acetylglucosaminidase activity, cleaves peptidoglycan fragments generated by SleB and CwlJ. Here we present crystal structures of B. cereus and B. megaterium SleL at 1.6 angstroms and 1.7 angstroms, respectively. The structures were determined with a view to identifying the structural basis of differences in catalytic efficiency between the respective enzymes. The catalytic (α/ß)8 -barrel cores of both enzymes are highly conserved from a structural perspective, including the spatial distribution of the catalytic residues. Both enzymes are equipped with two N-terminal peptidoglycan-binding LysM domains, which are also structurally highly conserved. However, the topological arrangement of the respective enzymes second LysM domain is markedly different, and this may account for differences in catalytic rates by impacting upon the position of the active sites with respect to their substrates. A chimeric enzyme comprising the B. megaterium SleL catalytic domain plus B. cereus SleL LysM domains displayed enzymatic activity comparable to the native B. cereus protein, exemplifying the importance of the LysM domains to SleL function. Similarly, the reciprocal construct, comprising the B. cereus SleL catalytic domain with B. megaterium SleL LysM domains, showed reduced activity compared with native B. cereus SleL.


Asunto(s)
Bacillus/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Esporas Bacterianas/enzimología , Secuencia de Aminoácidos , Bacillus/genética , Proteínas Bacterianas/genética , Cristalografía , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia
19.
Nat Commun ; 15(1): 4683, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824131

RESUMEN

The human mitochondrial genome is transcribed into two RNAs, containing mRNAs, rRNAs and tRNAs, all dedicated to produce essential proteins of the respiratory chain. The precise excision of tRNAs by the mitochondrial endoribonucleases (mt-RNase), P and Z, releases all RNA species from the two RNA transcripts. The tRNAs then undergo 3'-CCA addition. In metazoan mitochondria, RNase P is a multi-enzyme assembly that comprises the endoribonuclease PRORP and a tRNA methyltransferase subcomplex. The requirement for this tRNA methyltransferase subcomplex for mt-RNase P cleavage activity, as well as the mechanisms of pre-tRNA 3'-cleavage and 3'-CCA addition, are still poorly understood. Here, we report cryo-EM structures that visualise four steps of mitochondrial tRNA maturation: 5' and 3' tRNA-end processing, methylation and 3'-CCA addition, and explain the defined sequential order of the tRNA processing steps. The methyltransferase subcomplex recognises the pre-tRNA in a distinct mode that can support tRNA-end processing and 3'-CCA addition, likely resulting from an evolutionary adaptation of mitochondrial tRNA maturation complexes to the structurally-fragile mitochondrial tRNAs. This subcomplex can also ensure a tRNA-folding quality-control checkpoint before the sequential docking of the maturation enzymes. Altogether, our study provides detailed molecular insight into RNA-transcript processing and tRNA maturation in human mitochondria.


Asunto(s)
Mitocondrias , ARN de Transferencia , Ribonucleasa P , ARNt Metiltransferasas , Humanos , ARN de Transferencia/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/química , Mitocondrias/metabolismo , Ribonucleasa P/metabolismo , Ribonucleasa P/genética , Ribonucleasa P/química , ARNt Metiltransferasas/metabolismo , ARNt Metiltransferasas/genética , ARNt Metiltransferasas/química , Procesamiento Postranscripcional del ARN , Microscopía por Crioelectrón , ARN Mitocondrial/metabolismo , ARN Mitocondrial/genética , ARN Mitocondrial/química , Metilación , Conformación de Ácido Nucleico , Modelos Moleculares , Precursores del ARN/metabolismo , Precursores del ARN/genética
20.
Biochem J ; 448(3): 321-8, 2012 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-23067341

RESUMEN

The SAC (spindle assembly checkpoint) is a surveillance system that ensures the timely and accurate transmission of the genetic material to offspring. The process implies kinetochore targeting of the mitotic kinases Bub1 (budding uninhibited by benzamidine 1), BubR1 (Bub1 related) and Mps1 (monopolar spindle 1), which is mediated by the N-terminus of each kinase. In the present study we report the 1.8 Å (1 Å=0.1 nm) crystal structure of the TPR (tetratricopeptide repeat) domain in the N-terminal region of human Mps1. The structure reveals an overall high similarity to the TPR motif of the mitotic checkpoint kinases Bub1 and BubR1, and a number of unique features that include the absence of the binding site for the kinetochore structural component KNL1 (kinetochore-null 1; blinkin), and determinants of dimerization. Moreover, we show that a stretch of amino acids at the very N-terminus of Mps1 is required for dimer formation, and that interfering with dimerization results in mislocalization and misregulation of kinase activity. The results of the present study provide an important insight into the molecular details of the mitotic functions of Mps1 including features that dictate substrate selectivity and kinetochore docking.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/química , Proteínas Adaptadoras del Transporte Vesicular/fisiología , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/fisiología , Proteínas de Unión al GTP Heterotriméricas/química , Proteínas de Unión al GTP Heterotriméricas/fisiología , Puntos de Control de la Fase M del Ciclo Celular/fisiología , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/fisiología , Proteínas Tirosina Quinasas/química , Proteínas Tirosina Quinasas/fisiología , Secuencia de Aminoácidos , Cristalografía por Rayos X , Células HEK293 , Células HeLa , Humanos , Datos de Secuencia Molecular , Unión Proteica/fisiología , Estructura Terciaria de Proteína , Secuencias Repetitivas de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA