RESUMEN
Human exposure to toxic mercury (Hg) is dominated by the consumption of seafood1,2. Earth system models suggest that Hg in marine ecosystems is supplied by atmospheric wet and dry Hg(II) deposition, with a three times smaller contribution from gaseous Hg(0) uptake3,4. Observations of marine Hg(II) deposition and Hg(0) gas exchange are sparse, however5, leaving the suggested importance of Hg(II) deposition6 ill-constrained. Here we present the first Hg stable isotope measurements of total Hg (tHg) in surface and deep Atlantic and Mediterranean seawater and use them to quantify atmospheric Hg deposition pathways. We observe overall similar tHg isotope compositions, with median Δ200Hg signatures of 0.02, lying in between atmospheric Hg(0) and Hg(II) deposition end-members. We use a Δ200Hg isotope mass balance to estimate that seawater tHg can be explained by the mixing of 42% (median; interquartile range, 24-50%) atmospheric Hg(II) gross deposition and 58% (50-76%) Hg(0) gross uptake. We measure and compile additional, global marine Hg isotope data including particulate Hg, sediments and biota and observe a latitudinal Δ200Hg gradient that indicates larger ocean Hg(0) uptake at high latitudes. Our findings suggest that global atmospheric Hg(0) uptake by the oceans is equal to Hg(II) deposition, which has implications for our understanding of atmospheric Hg dispersal and marine ecosystem recovery.
RESUMEN
The characterization of Neandertals' diets has mostly relied on nitrogen isotope analyses of bone and tooth collagen. However, few nitrogen isotope data have been recovered from bones or teeth from Iberia due to poor collagen preservation at Paleolithic sites in the region. Zinc isotopes have been shown to be a reliable method for reconstructing trophic levels in the absence of organic matter preservation. Here, we present the results of zinc (Zn), strontium (Sr), carbon (C), and oxygen (O) isotope and trace element ratio analysis measured in dental enamel on a Pleistocene food web in Gabasa, Spain, to characterize the diet and ecology of a Middle Paleolithic Neandertal individual. Based on the extremely low δ66Zn value observed in the Neandertal's tooth enamel, our results support the interpretation of Neandertals as carnivores as already suggested by δ15N isotope values of specimens from other regions. Further work could help identify if such isotopic peculiarities (lowest δ66Zn and highest δ15N of the food web) are due to a metabolic and/or dietary specificity of the Neandertals.
Asunto(s)
Carnívoros , Hombre de Neandertal , Diente , Oligoelementos , Animales , Carbono/análisis , Isótopos de Carbono/análisis , Colágeno , Esmalte Dental/química , Dieta , Isótopos de Nitrógeno/análisis , Oxígeno/análisis , España , Estroncio/análisis , Diente/química , Oligoelementos/análisis , Zinc/análisis , Isótopos de Zinc/análisisRESUMEN
Mass-independent fractionation (MIF) of stable even mass number mercury (Hg) isotopes is observed in rainfall and gaseous elemental Hg0 globally and is used to quantify atmospheric Hg deposition pathways. The chemical reaction and underlying even-Hg MIF mechanism are unknown however and speculated to be caused by Hg photo-oxidation on aerosols at the tropopause. Here, we investigate the Hg isotope composition of free tropospheric Hg0 and oxidized HgII forms at the high-altitude Pic du Midi Observatory. We find that gaseous oxidized Hg has positive Δ199Hg, Δ201Hg, and Δ200Hg and negative Δ204Hg signatures, similar to rainfall Hg, and we document rainfall Hg Δ196Hg to be near zero. Cloud water and rainfall Hg show an enhanced odd-Hg MIF of 0.3 compared to gaseous oxidized HgII, potentially indicating the occurrence of in-cloud aqueous HgII photoreduction. Diurnal MIF observations of free tropospheric Hg0 show how net Hg0 oxidation in high-altitude air masses leads to opposite even- and odd-MIF in Hg0 and oxidized HgII. We speculate that even-Hg MIF takes place by a molecular magnetic isotope effect during HgII photoreduction on aerosols that involves magnetic halogen nuclei. A Δ200Hg mass balance suggests that global Hg deposition pathways in models are likely biased toward HgII deposition. We propose that Hg cycling models could accommodate the Hg-isotope constraints on emission and deposition fluxes.
Asunto(s)
Mercurio , Fraccionamiento Químico , Monitoreo del Ambiente , Isótopos , Mercurio/análisis , Isótopos de Mercurio/análisis , Oxidación-ReducciónRESUMEN
The Isotrace CNRS workgroup in collaboration with National Research Council of Canada has characterized a number of trace element mass fractions and isotope ratios currently not certified in AQUA-1 natural drinking water reference material (NRC Canada). This survey further expands the use of this material as a tool for environmental quality control, method validation, and method development tool for the international community. Simultaneously, the SLRS-6 river water was analyzed as quality control and also in order to compare both water characteristics, which were sampled in the same area but having undergone different treatment. Mass fractions for B, Cs, Li, Ga, Ge, Hf, Nb, P, Rb, Rh, Re, S, Sc, Se, Si, Sn, Th, Ti, Tl, W, Y, Zr, REEs, and six isotopic ratios are proposed for Sr and Pb. Measurements were mostly performed using ICP-MS with various calibration approaches. The results are reported as consensus or indicative values depending on the number of available datasets, with their associated uncertainties.
Asunto(s)
Agua Potable/química , Oligoelementos/química , Agua/química , Estándares de ReferenciaRESUMEN
Environmental regulations on mercury (Hg) emissions and associated ecosystem restoration are closely linked to what Hg levels we consider natural. It is widely accepted that atmospheric Hg deposition has increased by a factor 3 ± 1 since preindustrial times. However, no long-term historical records of actual atmospheric gaseous elemental Hg (GEM) concentrations exist. In this study we report Hg stable isotope signatures in Pyrenean peat records (southwestern Europe) that are used as tracers of Hg deposition pathway (Δ200Hg, wet vs dry Hg deposition) and atmospheric Hg sources and cycling (δ202Hg, Δ199Hg). By anchoring peat-derived GEM dry deposition to modern atmospheric GEM levels we are able to reconstruct the first millennial-scale atmospheric GEM concentration record. Reconstructed GEM levels from 1970 to 2010 agree with monitoring data, and maximum 20th century GEM levels of 3.9 ± 0.5 ng m-3 were 15 ± 4 times the natural Holocene background of 0.27 ± 0.11 ng m-3. We suggest that a -0.7 shift in δ202Hg during the medieval and Renaissance periods is caused by deforestation and associated biomass burning Hg emissions. Our findings suggest therefore that human impacts on the global mercury cycle are subtler and substantially larger than currently thought.
Asunto(s)
Isótopos de Mercurio , Suelo , Humedales , Contaminantes Atmosféricos , Monitoreo del Ambiente , Europa (Continente) , Humanos , MercurioRESUMEN
Stable Zn isotopes fractionation was studied in main biogeochemical compartments of a pristine larch forest of Central Siberia developed over continuous permafrost basalt rocks. Two north- and south-oriented watershed slopes having distinctly different vegetation biomass and active layer depth were used as natural proxy for predicting possible future climate changes occurring in this region. In addition, peat bog zone exhibiting totally different vegetation, hydrology and soil temperature regime has been studied. The isotopic composition of soil profile from Central Siberia is rather constant with a δ(66)Zn value around 0.2 close to the value of various basalts. Zn isotopic composition in mosses (Sphagnum fuscum and Pleurozium schreberi) exhibits differences between surface layers presenting values from 0.14 to 0.2 and bottom layers presenting significantly higher values (0.5 - 0.7) than the underlain mineral surface. The humification of both dead moss and larch needles leads to retain the fraction where Zn bound most strongly thus releasing the lighter isotopes in solution and preserving the heavy isotopes in the humification products, in general accord with previous experimental and modeling works [GCA 75:7632-7643, 2011]. The larch (Larix gmelinii) from North and South-facing slopes is enriched in heavy isotopes compared to soil reservoir while larch from Sphagnum peatbog is enriched in light isotopes. This difference may result from stronger complexation of Zn by organic ligands and humification products in the peat bog compared to mineral surfaces in North- and South-facing slope. During the course of the growing period, Zn followed the behavior of macronutrients with a decrease of concentration from June to September. During this period, an enrichment of larch needles by heavier Zn isotopes is observed in the various habitats. We suggest that the increase of the depth of rooting zone, and the decrease of DOC and Zn concentration in soil solution from the root uptake zone with progressively thawing soil could provoke heavy isotopes to become more available for the larch roots at the end of the vegetative season compared to the beginning of the season, because the decrease of DOC will facilitate the uptake of heavy isotope as it will be less retained in strong organic complexes.
RESUMEN
This work demonstrates the feasibility of the measurement of the isotopic composition of dissolved iron in seawater for an iron concentration range, 0.05-1 nmol L(-1), allowing measurements in most oceanic waters, including Fe depleted waters of high nutrient low chlorophyll areas. It presents a detailed description of our previously published protocol, with significant improvements on detection limit and blank contribution. Iron is preconcentrated using a nitriloacetic acid superflow resin and purified using an AG 1-x4 anion exchange resin. The isotopic ratios are measured with a multicollector-inductively coupled plasma mass spectrometer (MC-ICPMS) Neptune, coupled with a desolvator (Aridus II or Apex-Q), using a (57)Fe-(58)Fe double spike mass bias correction. A Monte Carlo test shows that optimum precision is obtained for a double spike composed of approximately 50% (57)Fe and 50% (58)Fe and a sample to double spike quantity ratio of approximately 1. Total procedural yield is 91 +/- 25% (2SD, n = 55) for sample sizes from 20 to 2 L. The procedural blank ranges from 1.4 to 1.1 ng, for sample sizes ranging from 20 to 2 L, respectively, which, converted into Fe concentrations, corresponds to blank contributions of 0.001 and 0.010 nmol L(-1), respectively. Measurement precision determined from replicate measurements of seawater samples and standard solutions is 0.08 per thousand (delta(56)Fe, 2SD). The precision is sufficient to clearly detect and quantify isotopic variations in the oceans, which so far have been observed to span 2.5 per thousand and thus opens new perspectives to elucidate the oceanic iron cycle.
Asunto(s)
Hierro/análisis , Espectrometría de Masas/métodos , Agua de Mar/química , Resinas de Intercambio Aniónico/química , Hierro/aislamiento & purificación , Isótopos de Hierro/análisis , Isótopos de Hierro/aislamiento & purificación , Límite de Detección , Método de Montecarlo , Reproducibilidad de los ResultadosRESUMEN
Nowadays, atmospheric pollution has a major impact on the human health and the environment, encouraging the development of biomonitors of the air quality over a wide zone. In this study, the relevance of the epiphyte plants Tillandsia usneoides is studied to estimate the transfer of metal(loid)s from a former Zn and Pb mining zone in the Southeast of Spain (Cartagena-La Unión) to the local atmosphere. Biomonitoring was performed by installing plants in 5 sites along a transect from the main mining area to the urban and the coastal zones. An aliquot of plants was collected in every site every 2 months over 1 year. The Tillandsia usneoides have been observed with SEM-EDX, and analysed by ICP-MS to determine trace element concentrations, magnetic susceptibility signals and Zn and Pb isotopes ratios. Results show that atmospheric particles are distributed homogeneously at the plant surface. By comparing elemental contents in Tillandsia usneoides with regard to the values of the geochemical background of the region of Murcia, significant enrichments are observed in the epiphyte plants for Sb, As, Cd, Zn and Pb. The statistical analyses (decentred PCA and PLS) also suggest that the kinetics of dust deposition is slower for the urban and coastal sites compared to the mining sites and highlight an influence of agricultural activities in Cu deposition. The similarity of isotopic compositions (Zn and Pb) between Tillandsia usneoides, soils and atmospheric particles also put in evidence that these plants could be a powerful tool to trace the source of matter in the atmosphere. Finally, this experiment provides new insight to better understand the foliar absorption mechanisms.
Asunto(s)
Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Tillandsia/química , Oligoelementos/análisis , Contaminación del Aire/análisis , Atmósfera/análisis , Atmósfera/química , Contaminación Ambiental/análisis , Metales/análisis , Minería , Suelo/química , EspañaRESUMEN
Zinc (Zn) isotope ratios of dental enamel are a promising tracer for dietary reconstruction in archeology, but its use is still in its infancy. A recent study demonstrated a high risk of Zn contamination from nitrile, and latex gloves used during chemical sample preparation. Here we assess the potential impact of the use of such gloves during enamel sampling on the Zn isotope composition of teeth from a population of early Holocene hunter gatherers from Lapa do Santo, Lagoa Santa, Minas Gerais, Brazil. We first examined the amount of Zn and its isotopic composition released from the gloves used in this study by soaking them in weak nitric acid and water. We compared Zn isotope ratios obtained from teeth that were sampled wearing nitrile, latex or no gloves. Finally, we performed a linear mixed model (LMM) to investigate post hoc the relationship between the gloves used for sampling and the Zn isotope variability in dental enamel. We found that the gloves used in this study released a similar amount of Zn compared to previous work, but only in acidic solution. Zn isotope ratios of teeth and the LMM identified no sign of significant Zn coming from the gloves when teeth were handled for enamel sampling. We hypothesize that Zn in gloves is mostly released by contact with acids. We found that the main source of Zn isotope variability in the Lapa do Santo population was related to the developmental stage of the tooth tissues sampled. We report identical results for two individuals coming from a different archeological context. Tooth enamel formed in utero and/or during the two first years of life showed higher Zn isotope ratios than enamel formed after weaning. More work is required to systematically investigate if Zn isotopes can be used as a breastfeeding tracer.
Asunto(s)
Arqueología , Dieta , Diente/química , Isótopos de Zinc/análisis , Artefactos , Brasil , Niño , Humanos , Lactante , DesteteRESUMEN
In some locations, artisanal and small-scale gold-mining (ASGM) represents a significant source of anthropogenic Hg to freshwater environments. The Hg released from ASGM can contaminate aquatic fauna and pose health risks to downstream populations. Total Hg (THg) concentrations, speciation, and isotopic compositions were analyzed in water, suspended particulate matter, soil, and bottom sediment samples from pristine areas and in places of active and legacy gold mining along the Oyapock River (French Guiana) and its tributaries. Mass-independent fractionation (MIF) of even Hg isotopes in top soils (Δ200Hgâ¯=â¯-0.06⯱â¯0.02, nâ¯=â¯10) implied the uptake of gaseous Hg(0) by plants, rather than wet deposition, as the primary Hg source. Odd isotope MIF was lower in deep soils (Δ199Hgâ¯=â¯-0.75⯱â¯0.03, nâ¯=â¯7) than in top soils (Δ199Hgâ¯=â¯-0.55⯱â¯0.15, nâ¯=â¯3). This variation could be attributed to differences between the isotopic signatures of modern and pre-industrial atmospheric Hg. Combining a Hg-isotope binary mixing model with a multiple linear regression based on physico-chemical parameters measured in the sediment samples, we determined that active mined creek sediments are contaminated by ASGM activities, with up to 78% of THg being anthropogenic. Of this anthropogenic Hg, more than half (66-74%) originates from liquid Hg(0) that is released during ASGM. The remaining anthropogenic Hg comes from the ASGM-driven erosion of Hg-rich soils into the river. The isotope signatures of anthropogenic Hg in bottom sediments were no longer traceable in formerly mined rivers and creeks.
Asunto(s)
Monitoreo del Ambiente/métodos , Oro , Isótopos de Mercurio/análisis , Minería , Ríos/química , Sedimentos Geológicos/química , Mercurio/análisis , Suelo/química , Contaminantes Químicos del Agua/análisisRESUMEN
In this study, antimony (Sb) isotopic composition was determined in natural water samples collected along two hydrosystems impacted by historical mining activities: the upper Orb River and the Gardon River watershed (SE, France). Antimony isotope ratio was measured by HG-MC-ICP-MS (Hydride Generation Multi-Collector Inductively Coupled Plasma Mass Spectrometer) after a preconcentration and purification step using a new thiol-cellulose powder (TCP) procedure. The external reproducibility obtained for δ(123)Sb measurements of our in-house Sb isotopic standard solution and a certified reference freshwater was 0.06 (2σ). Significant isotopic variations were evident in surface waters from the upper Orb River (-0.06≤δ(123)Sb≤+0.11) and from the Gardon River watershed (+0.27≤δ(123)Sb≤+0.83). In particular, streams that drained different former mining sites exploited for Sb or Pb-Zn exhibited contrasted Sb isotopic signature, that may be related to various biogeochemical processes occurring during Sb transfer from rocks, mine wastes and sediments to the water compartment. Nevertheless, Sb isotopic composition appeared to be stable along the Gardon River, which might be attributed to the conservative transport of Sb at distance from mine-impacted streams, due to the relative mobile behavior of Sb(V) in natural oxic waters. This study suggests that Sb isotopic composition could be a useful tool to track pollution sources and/or biogeochemical processes in hydrologic systems.
RESUMEN
Rare earth element (REE) concentrations and neodymium isotopic composition (ÉNd) are tracers for ocean circulation and biogeochemistry. Although models suggest that REE release from lithogenic sediment in river discharge may dominate all other REE inputs to the oceans, the occurrence, mechanisms and magnitude of such a source are still debated. Here we present the first simultaneous observations of dissolved (<0.45 µm), colloidal and particulate REE and ÉNd in the Amazon estuary. A sharp drop in dissolved REE in the low-salinity zone is driven by coagulation of colloidal matter. At mid-salinities, total dissolved REE levels slightly increase, while ÉNd values are shifted from the dissolved Nd river endmember (-8.9) to values typical of river suspended matter (-10.6). Combining a Nd isotope mass balance with apparent radium isotope ages of estuarine waters suggests a rapid (3 weeks) and globally significant Nd release by dissolution of lithogenic suspended sediments.