RESUMEN
Background and Objectives: Endoscopic epidural neuroplasty (EEN) facilitates adhesiolysis through direct epiduroscopic visualization, offering more precise neural decompression than that exhibited by percutaneous epidural neuroplasty (PEN). We aimed to compare the effects of EEN and PEN for 6 months after treatment with lower back and radicular pain in patients. Methods: This retrospective study compared the visual analog scale (VAS) and Oswestry disability index (ODI) scores in patients with low back and radicular pain who underwent EEN or PEN with a steering catheter. The medical records of 107 patients were analyzed, with 73 and 34 undergoing EEN and PEN, respectively. Results: The VAS and ODI scores decreased at all time points after EEN and PEN. VAS and ODI scores decreased more in the EEN group than those in the PEN group at 1 day and 1- and 6-months post-procedure, indicating superior pain relief for both lower back and radicular pain through EEN. Conclusions: EEN is a superior treatment of pain control than PEN in lower back and radicular pain patients.
Asunto(s)
Dolor de la Región Lumbar , Humanos , Dolor de la Región Lumbar/cirugía , Dolor de la Región Lumbar/terapia , Femenino , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Resultado del Tratamiento , Estudios de Seguimiento , Anciano , Adulto , Endoscopía/métodos , Dimensión del Dolor/métodos , Espacio Epidural , Descompresión Quirúrgica/métodosRESUMEN
The objective of this study was to compare facial temperatures and the visual analogue scale (VAS) between the drip method and the topical method of transnasal sphenopalatine ganglion block (SPGB). The transnasal SPGB is administered to patients with facial or head and neck pain. In the transnasal approach, the drip and topical methods are frequently used. We compared facial temperatures and VAS after transnasal SPGB. Medical records of 74 patients who visited the pain clinic and underwent transnasal SPGB were retrospectively reviewed. A total of 156 transnasal SPGB were performed. The patients were divided into the drip-method and topical-method groups. Facial temperatures were measured in six areas of the right and left forehead, maxilla, and mandible before and 30 min after completion of the transnasal SPGB. Temperatures were compared before and 30 min after SPGB in each group and between the two groups. VAS scores were compared at the same times of SPGB in each group and between the two groups. In the drip-method group, there were significant increases at four areas of the face in temperature changes at 30 min after SPGB. In the topical-method group, there was no significant difference in the temperature changes at 30 min after SPGB. There were statistically significant differences in the facial temperature changes between the two groups in the right forehead (p = 0.001), left forehead (p = 0.015), and right maxillary area (p = 0.046). In herpes zoster, there were statistically significant differences in the VAS scores between before and 30 min after SPGB in both groups (p < 0.001, p = 0.008) and between two groups (p < 0.001). In migraine, there were statistically significant differences in VAS scores between before and 30 min after SPGB in both groups (p < 0.001, p = 0.004) and between two groups (p = 0.014). Transnasal SPGB using two methods showed different temperature changes and VAS scores.