Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Small ; 17(41): e2102892, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34515417

RESUMEN

Native extracellular matrix (ECM) exhibits dynamic change in the ligand position. Herein, the ECM-emulating control and real-time monitoring of stem cell differentiation are demonstrated by ligand nanoassembly. The density of gold nanoassembly presenting cell-adhesive Arg-Gly-Asp (RGD) ligand on Fe3 O4 (magnetite) nanoparticle in nanostructures flexibly grafted to material is changed while keeping macroscale ligand density invariant. The ligand nanoassembly on the Fe3 O4 can be magnetically attracted to mediate rising and falling ligand movements via linker stretching and compression, respectively. High ligand nanoassembly density stimulates integrin ligation to activate the mechanosensing-assisted stem cell differentiation, which is monitored via in situ real-time electrochemical sensing. Magnetic control of rising and falling ligand movements hinders and promotes the adhesion-mediated mechanotransduction and differentiation of stem cells, respectively. These rising and falling ligand states yield the difference in the farthest distance (≈34.6 nm) of the RGD from material surface, thereby dynamically mimicking static long and short flexible linkers, which hinder and promote cell adhesion, respectively. Design of cytocompatible ligand nanoassemblies can be made with combinations of dimensions, shapes, and biomimetic ligands for remotely regulating stem cells for offering novel methodologies to advance regenerative therapies.


Asunto(s)
Fenómenos Magnéticos , Mecanotransducción Celular , Adhesión Celular , Diferenciación Celular , Ligandos
2.
Nano Lett ; 20(10): 7272-7280, 2020 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-32910662

RESUMEN

Macrophages can associate with extracellular matrix (ECM) demonstrating nanosequenced cell-adhesive RGD ligand. In this study, we devised barcoded materials composed of RGD-coated gold and RGD-absent iron nanopatches to show various frequencies and position of RGD-coated nanopatches with similar areas of iron and RGD-gold nanopatches that maintain macroscale and nanoscale RGD density invariant. Iron patches were used for substrate coupling. Both large (low frequency) and externally positioned RGD-coated nanopatches stimulated robust attachment in macrophages, compared with small (high frequency) and internally positioned RGD-coated nanopatches, respectively, which mediate their regenerative/anti-inflammatory M2 polarization. The nanobarcodes exhibited stability in vivo. We shed light into designing ligand-engineered nanostructures in an external position to facilitate host cell attachment, thereby eliciting regenerative host responses.


Asunto(s)
Macrófagos , Oligopéptidos , Antiinflamatorios , Adhesión Celular , Oro/farmacología , Ligandos , Oligopéptidos/farmacología
3.
Nano Lett ; 20(6): 4188-4196, 2020 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-32406688

RESUMEN

Developing materials with remote controllability of macroscale ligand presentation can mimic extracellular matrix (ECM) remodeling to regulate cellular adhesion in vivo. Herein, we designed charged mobile nanoligands with superparamagnetic nanomaterials amine-functionalized and conjugated with polyethylene glycol linker and negatively charged RGD ligand. We coupled negatively a charged nanoligand to a positively charged substrate by optimizing electrostatic interactions to allow reversible planar movement. We demonstrate the imaging of both macroscale and in situ nanoscale nanoligand movement by magnetically attracting charged nanoligand to manipulate macroscale ligand density. We show that in situ magnetic control of attracting charged nanoligand facilitates stem cell adhesion, both in vitro and in vivo, with reversible control. Furthermore, we unravel that in situ magnetic attraction of charged nanoligand stimulates mechanosensing-mediated differentiation of stem cells. This remote controllability of ECM-mimicking reversible ligand variations is promising for regulating diverse reparative cellular processes in vivo.


Asunto(s)
Adhesión Celular , Fenómenos Magnéticos , Oligopéptidos , Células Madre , Diferenciación Celular , Matriz Extracelular
4.
J Phys Chem Lett ; 15(4): 983-997, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38252652

RESUMEN

Hafnia-based ferroelectrics and their semiconductor applications are reviewed, focusing on next-generation dynamic random-access-memory (DRAM) and Flash. The challenges of achieving high endurance and high write/read speed and the optimal material properties to achieve them are discussed. In DRAM applications, the trade-off between remanent polarization (Pr), endurance, and operation speed is highlighted, focusing on reducing the critical material property Ec (coercive field). Novel phase formation and interfacial redox chemistry are reviewed as potential game-changers for ferroelectric memories. Regarding Flash operation, the need for an ideal Pr and Ec ratio is emphasized, as excessive Pr can lead to charge trapping, resulting in fatigue and pass disturbance in the NAND array. Achieving the right balance of Pr and Ec for ferroelectric NAND with hafnia-based ferroelectrics remains challenging. This Perspective also recognizes technical advancements in FeFET technology, offering potential solutions for improved performance and casting a positive outlook on the future of ferroelectric memory technology.

5.
Urolithiasis ; 51(1): 54, 2023 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-36933126

RESUMEN

To investigate the optimal scanning parameters of dual-energy computed tomography (DECT), which can accurately determine sensitivity (the detectability of urinary stones) and accuracy (the composition matching of urinary stones), and to apply them to clinical trials. Fifteen urinary stones were chemically analyzed, and their chemical compositions were considered a reference standard with which we compared the uric acid (UA) and non-UA compositions determined using DECT. The urinary stones were placed inside a bolus and scanned with a dual-source CT scanner under various selected dual-energy conditions (A to X) using various solid water phantom thicknesses. These datasets were analyzed using the Siemens syngo.via software tool (integrated into the CT system) for matching the sensitivity and accuracy assessments. This study showed that 80% of the highest sensitivity (detection of urinary stones) and 92% of the highest accuracy (composition matching of urinary stones) were achieved under condition A (a collimation beam width setting of 2 × 32 × 0.6 mm, an automatic exposure control setting of 80/sn140 peak kilovoltage, and a slice thickness of 0.5/0.5 mm) (P < 0.05). Application of the DECT energy parameters presented in the study will help identify the sensitivity and accuracy of UA and non-UA stone analysis, even in patients with small-sized urinary stones and in conditions difficult for analysis.


Asunto(s)
Líquidos Corporales , Cálculos Urinarios , Humanos , Tomografía Computarizada por Rayos X/métodos , Cálculos Urinarios/diagnóstico por imagen , Cálculos Urinarios/química , Fantasmas de Imagen , Ácido Úrico/análisis , Líquidos Corporales/química
6.
Adv Mater ; 34(2): e2105460, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34655440

RESUMEN

In native microenvironment, diverse physical barriers exist to dynamically modulate stem cell recruitment and differentiation for tissue repair. In this study, nanoassembly-based magnetic screens of various sizes are utilized, and they are elastically tethered over an RGD ligand (cell-adhesive motif)-presenting material surface to generate various nanogaps between the screens and the RGDs without modulating the RGD density. Large screens exhibiting low RGD distribution stimulate integrin clustering to facilitate focal adhesion, mechanotransduction, and differentiation of stem cells, which are not observed with small screens. Magnetic downward pulling of the large screens decreases the nanogaps, which dynamically suppress the focal adhesion, mechanotransduction, and differentiation of stem cells. Conversely, magnetic upward pulling of the small screens increases the nanogaps, which dynamically activates focal adhesion, mechanotransduction, and differentiation of stem cells. This regulation mechanism is also shown to be effective in the microenvironment in vivo. Further diversifying the geometries of the physical screens can further enable diverse modalities of multifaceted and safe unscreening of the distributed RGDs to unravel and modulate stem cell differentiation for tissue repair.


Asunto(s)
Fenómenos Magnéticos , Mecanotransducción Celular , Adhesión Celular , Diferenciación Celular , Ligandos
7.
Adv Mater ; 33(11): e2008353, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33527502

RESUMEN

Native extracellular matrix (ECM) can exhibit cyclic nanoscale stretching and shrinking of ligands to regulate complex cell-material interactions. Designing materials that allow cyclic control of changes in intrinsic ligand-presenting nanostructures in situ can emulate ECM dynamicity to regulate cellular adhesion. Unprecedented remote control of rapid, cyclic, and mechanical stretching ("ON") and shrinking ("OFF") of cell-adhesive RGD ligand-presenting magnetic nanocoils on a material surface in five repeated cycles are reported, thereby independently increasing and decreasing ligand pitch in nanocoils, respectively, without modulating ligand-presenting surface area per nanocoil. It is demonstrated that cyclic switching "ON" (ligand nanostretching) facilitates time-regulated integrin ligation, focal adhesion, spreading, YAP/TAZ mechanosensing, and differentiation of viable stem cells, both in vitro and in vivo. Fluorescence resonance energy transfer (FRET) imaging reveals magnetic switching "ON" (stretching) and "OFF" (shrinking) of the nanocoils inside animals. Versatile tuning of physical dimensions and elements of nanocoils by regulating electrodeposition conditions is also demonstrated. The study sheds novel insight into designing materials with connected ligand nanostructures that exhibit nanocoil-specific nano-spaced declustering, which is ineffective in nanowires, to facilitate cell adhesion. This unprecedented, independent, remote, and cytocompatible control of ligand nanopitch is promising for regulating the mechanosensing-mediated differentiation of stem cells in vivo.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Fenómenos Mecánicos , Nanoestructuras , Células Madre/citología , Células Madre/efectos de los fármacos , Adhesión Celular , Humanos , Ligandos , Factores de Tiempo
8.
Adv Mater ; 32(40): e2004300, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32820574

RESUMEN

The native extracellular matrix (ECM) can exhibit heterogeneous nano-sequences periodically displaying ligands to regulate complex cell-material interactions in vivo. Herein, an ECM-emulating heterogeneous barcoding system, including ligand-bearing Au and ligand-free Fe nano-segments, is developed to independently present tunable frequency and sequences in nano-segments of cell-adhesive RGD ligand. Specifically, similar exposed surface areas of total Fe and Au nano-segments are designed. Fe segments are used for substrate coupling of nanobarcodes and as ligand-free nano-segments and Au segments for ligand coating while maintaining both nanoscale (local) and macroscale (total) ligand density constant in all groups. Low nano-ligand frequency in the same sequences and terminally sequenced nano-ligands at the same frequency independently facilitate focal adhesion and mechanosensing of stem cells, which are collectively effective both in vitro and in vivo, thereby inducing stem cell differentiation. The Fe/RGD-Au nanobarcode implants exhibit high stability and no local and systemic toxicity in various tissues and organs in vivo. This work sheds novel insight into designing biomaterials with heterogeneous nano-ligand sequences at terminal sides and/or low frequency to facilitate cellular adhesion. Tuning the electrodeposition conditions can allow synthesis of unlimited combinations of ligand nano-sequences and frequencies, magnetic elements, and bioactive ligands to remotely regulate numerous host cells in vivo.


Asunto(s)
Adhesión Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Nanotecnología/métodos , Células Madre/citología , Células Madre/efectos de los fármacos , Línea Celular , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/metabolismo , Oro/química , Humanos , Hierro/química , Ligandos , Oligopéptidos/química , Oligopéptidos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA