Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Biochem Biophys Res Commun ; 461(3): 543-8, 2015 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-25912875

RESUMEN

Nucleotide excision repair (NER) is the sole mechanism of UV-induced DNA lesion repair in mammals. A single round of NER requires multiple components including seven core NER factors, xeroderma pigmentosum A-G (XPA-XPG), and many auxiliary effector proteins including ATR serine/threonine kinase. The XPA protein helps to verify DNA damage and thus plays a rate-limiting role in NER. Hence, the regulation of XPA is important for the entire NER kinetic. We found that NDR1, a novel XPA-interacting protein, modulates NER by modulating the UV-induced DNA-damage checkpoint. In quiescent cells, NDR1 localized mainly in the cytoplasm. After UV irradiation, NDR1 accumulated in the nucleus. The siRNA knockdown of NDR1 delayed the repair of UV-induced cyclobutane pyrimidine dimers in both normal cells and cancer cells. It did not, however, alter the expression levels or the chromatin association levels of the core NER factors following UV irradiation. Instead, the NDR1-depleted cells displayed reduced activity of ATR for some set of its substrates including CHK1 and p53, suggesting that NDR1 modulates NER indirectly via the ATR pathway.


Asunto(s)
Daño del ADN , Reparación del ADN , Proteínas Serina-Treonina Quinasas/fisiología , Rayos Ultravioleta , Línea Celular Tumoral , Células Cultivadas , Proteínas de Unión al ADN/metabolismo , Silenciador del Gen , Humanos , Proteínas Serina-Treonina Quinasas/genética , ARN Interferente Pequeño
2.
Neurobiol Dis ; 54: 414-20, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23376682

RESUMEN

A recent study suggested that a cell-free extract of human adipose stem cells (hASCs-E) has beneficial effects on neurological diseases by modulating the host environment. Here, we investigated the effects of hASCs-E in several experimental models of stroke in vitro (oxygen and glucose deprivation, OGD) and in vivo (transient or permanent focal cerebral ischemia and intracerebral hemorrhage, ICH). Ischemia was induced in vitro in Neuro2A cells, and the hASCs-E was applied 24h before the OGD or concurrently. Focal cerebral ischemia was induced by unilateral intraluminal thread occlusion of the middle cerebral artery (MCA) in rats for 90min or permanently, or by unilateral MCA microsurgical direct electrocoagulation in mice. The ICH model was induced with an intracerebral injection of collagenase in rats. The hASCs-E was intraperitoneally administered 1h after the stroke insults. Treatment of the hASCs-E led to a substantially high viability in the lactate dehydrogenase and WST-1 assays in the in vitro ischemic model. The cerebral ischemic and ICH model treated with hASCs-E showed decreased ischemic volume and reduced brain water content and hemorrhage volume. The ICH model treated with hASCs-E exhibited better performance on the modified limb placing test. The expression of many genes related to inflammation, immune response, and cell-death was changed substantially in the ischemic rats or neuronal cells treated with the hASCs-E. These results reveal a neuroprotective role of hASCs-E in animal models of stroke, and suggest the feasible application of stem cell-based, noninvasive therapy for treating stroke.


Asunto(s)
Adipocitos/química , Encéfalo/efectos de los fármacos , Sistema Libre de Células , Fármacos Neuroprotectores/farmacología , Células Madre/química , Accidente Cerebrovascular/metabolismo , Animales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Análisis de Secuencia por Matrices de Oligonucleótidos , Ratas , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Accidente Cerebrovascular/patología , Transcriptoma/efectos de los fármacos
3.
Oncogene ; 39(16): 3245-3257, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32086441

RESUMEN

ATR and CHK1 play key roles in the protection and recovery of the stalled replication forks. Claspin, an adaptor for CHK1 activation, is essential for DNA damage signaling and efficient replication fork progression. Here, we show that tristetraprolin (TTP), an mRNA-binding protein, can modulate the replication stress response via stabilization of Claspin mRNA. TTP depletion compromised specifically in the phosphorylation of CHK1, but not p53 or H2AX among other ATR substrates, and produced CHK1-defective replication phenotypes including accumulation of stalled replication forks. Importantly, the expression of siRNA-resistant TTP in TTP-deficient cells restored CHK1 phosphorylation and reduced the number of stalled replication forks as close to the control cells. Besides, we found that TTP was required for efficient replication fork progression even in the absence of exogenous DNA damage in a Claspin-dependent manner. Mechanistically, TTP was able to bind to the 3'-untranslated region of Claspin mRNA to increase the stability of Claspin mRNA which eventually contributed to the subsequent ATR-CHK1 activation upon DNA damage. Taken together, our results revealed an intimate link between TTP-dependent Claspin mRNA stability and ATR-CHK1-dependent replication fork stability to maintain replication fork integrity and chromosomal stability.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Replicación del ADN/genética , Estabilidad del ARN/genética , Tristetraprolina/genética , Regiones no Traducidas 3'/genética , Células A549 , Proteínas de la Ataxia Telangiectasia Mutada/genética , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/genética , Inestabilidad Cromosómica/genética , Proteínas de Unión al ADN/genética , Células Epiteliales/metabolismo , Células HCT116 , Histonas/genética , Humanos , ARN Mensajero/genética , Estrés Fisiológico/genética , Proteína p53 Supresora de Tumor/genética
4.
Oncotarget ; 7(22): 32980-9, 2016 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-27145275

RESUMEN

Non-thermal plasma (NTP) has been emerging as a potential cancer therapeutic. However, the practical use of NTP as a cancer therapy requires a better understanding of the precise mechanisms underlying NTP-induced DNA damage responses in order to achieve optimal efficacy. It has been shown that the addition of oxygen gas flow during NTP treatment (NTPO), when compared to NTP exposure alone, can induce a 2-3 fold greater generation of intracellular reactive oxygen species (ROS) in A549 cells. Here, we examined NTPO-induced DNA damage responses and found that NTPO generated a substantial number of genomic DNA lesions and breaks that activated ATR-mediated cell-cycle checkpoints. In addition, we discovered that NTPO-induced DNA lesions were primarily removed by base excision repair (BER) rather than by nucleotide excision repair (NER). Therefore, the inhibition of the BER pathway using a PARP1 inhibitor drastically induced the phosphorylation of γH2AX, and was followed by the programmed cell death of cancer cells. However, the knock-down of XPA, which inhibited the NER pathway, had no effect on NTPO-induced phosphorylation of γH2AX. Finally, in agreement with a recent report, we found a circadian rhythm of PARP1 activity in normal mouse embryonic fibroblasts that needed for cell viability upon NTPO treatment. Taken together, our findings provided an advanced NTP regimen for cancer treatment by combining NTPO treatment with chemical adjuvants for the inhibition of ATR- and PARP1-activated DNA damage responses, and circadian timing of treatment.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Relojes Circadianos/efectos de los fármacos , Daño del ADN , Neoplasias Pulmonares/terapia , Melanoma/terapia , Gases em Plasma/farmacología , Poli(ADP-Ribosa) Polimerasas/metabolismo , Células A549 , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Proteínas de la Ataxia Telangiectasia Mutada/genética , Línea Celular Tumoral , Relojes Circadianos/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Melanoma/genética , Melanoma/metabolismo , Melanoma/patología , Ratones , Ratones Noqueados , Poli(ADP-Ribosa) Polimerasa-1/genética , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli(ADP-Ribosa) Polimerasas/genética
5.
Oncotarget ; 6(26): 22575-86, 2015 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-26317794

RESUMEN

The capacity of tumor cells for nucleotide excision repair (NER) is a major determinant of the efficacy of and resistance to DNA-damaging chemotherapeutics, such as cisplatin. Here, we demonstrate that using lesion-specific monoclonal antibodies, NER capacity is enhanced in human lung cancer cells after preconditioning with DNA-damaging agents. Preconditioning of cells with a nonlethal dose of UV radiation facilitated the kinetics of subsequent cisplatin repair and vice versa. Dual-incision assay confirmed that the enhanced NER capacity was sustained for 2 days. Checkpoint activation by ATR kinase and expression of NER factors were not altered significantly by the preconditioning, whereas association of XPA, the rate-limiting factor in NER, with chromatin was accelerated. In preconditioned cells, SIRT1 expression was increased, and this resulted in a decrease in acetylated XPA. Inhibition of SIRT1 abrogated the preconditioning-induced predominant XPA binding to DNA lesions. Taking these data together, we conclude that upregulated NER capacity in preconditioned lung cancer cells is caused partly by an increased level of SIRT1, which modulates XPA sensitivity to DNA damage. This study provides some insights into the molecular mechanism of chemoresistance through acquisition of enhanced DNA repair capacity in cancer cells.


Asunto(s)
Reparación del ADN , Neoplasias Pulmonares/genética , Anticuerpos Monoclonales/farmacología , Línea Celular Tumoral , Cisplatino/farmacología , Daño del ADN , ADN de Neoplasias/efectos de los fármacos , ADN de Neoplasias/genética , Proteínas de Unión al ADN/genética , Humanos , Neoplasias Pulmonares/metabolismo , Dímeros de Pirimidina/farmacología
6.
Sci Rep ; 4: 6638, 2014 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-25319447

RESUMEN

The atmospheric pressure helium plasma jet driven by pulsed dc voltage was utilized to treat human lung cancer cells in vitro. The properties of plasma plume were adjusted by the injection type and flow rate of additive oxygen gas in atmospheric pressure helium plasma jet. The plasma characteristics such as plume length, electric current and optical emission spectra (OES) were measured at different flow rates of additive oxygen to helium. The plasma plume length and total current decreased with an increase in the additive oxygen flow rate. The electron excitation temperature estimated by the Boltzmann plot from several excited helium emission lines increased slightly with the additive oxygen flow. The oxygen atom density in the gas phase estimated by actinometry utilizing argon was observed to increase with the additive oxygen flow. The concentration of intracellular reactive oxygen species (ROS) measured by fluorescence assay was found to be not exactly proportional to that of extracellular ROS (measured by OES), but both correlated considerably. It was also observed that the expression levels of p53 and the phospho-p53 were enhanced in the presence of additive oxygen flow compared with those from the pure helium plasma treatment.


Asunto(s)
Helio/administración & dosificación , Neoplasias Pulmonares/patología , Oxígeno/administración & dosificación , Especies Reactivas de Oxígeno/metabolismo , Presión Atmosférica , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/terapia , Proteína p53 Supresora de Tumor/biosíntesis
7.
Gene ; 545(2): 185-93, 2014 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-24838203

RESUMEN

Alzheimer's disease (AD) is the most common form of dementia in the elderly and represents an important and increasing clinical challenge in terms of diagnosis and treatment. Mutations in the genes encoding amyloid precursor protein (APP), presenilin 1 (PSEN1) and presenilin 2 (PSEN2) are responsible for early-onset autosomal dominant AD. The ε4 allele of the apolipoprotein E (APOE) gene has been recognized as a major genetic risk factor for the more common, complex, late-onset AD. Fibrillar deposits by phosphorylated tau are also a key pathological feature of AD. The retromer complex also has been reported to late-onset AD. More recently, genome-wide association studies (GWASs) identified putative novel candidate genes associated with late-onset AD. Lastly, several studies showed that circulating microRNAs (miRNAs) in the cerebrospinal fluid (CSF) and blood serum of AD patients can be used as biomarkers in AD diagnosis. This review addresses the advances and challenges in determining genetic and diagnostic markers for complex AD pathogenesis.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/genética , Secretasas de la Proteína Precursora del Amiloide/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animales , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Marcadores Genéticos , Estudio de Asociación del Genoma Completo , Humanos , MicroARNs/genética , Complejos Multiproteicos/metabolismo , Presenilinas/genética , Presenilinas/metabolismo , Unión Proteica , Proteínas tau/genética , Proteínas tau/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA