Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Nat Mater ; 12(4): 359-66, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23416726

RESUMEN

Three-photon excitation is a process that occurs when three photons are simultaneously absorbed within a luminophore for photo-excitation through virtual states. Although the imaging application of this process was proposed decades ago, three-photon biomedical imaging has not been realized yet owing to its intrinsic low quantum efficiency. We herein report on high-resolution in vitro and in vivo imaging by combining three-photon excitation of ZnS nanocrystals and visible emission from Mn(2+) dopants. The large three-photon cross-section of the nanocrystals enabled targeted cellular imaging under high spatial resolution, approaching the theoretical limit of three-photon excitation. Owing to the enhanced Stokes shift achieved through nanocrystal doping, the three-photon process was successfully applied to high-resolution in vivo tumour-targeted imaging. Furthermore, the biocompatibility of ZnS nanocrystals offers great potential for clinical applications of three-photon imaging.


Asunto(s)
Nanopartículas/química , Sulfuros/química , Compuestos de Zinc/química , Humanos , Manganeso/química , Fantasmas de Imagen , Fotones , Células Tumorales Cultivadas
2.
Langmuir ; 26(4): 2240-3, 2010 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-20073498

RESUMEN

We present a simple method to fabricate a polymer optical sheet with antireflection and antifogging properties. The method consists of two consecutive steps: photocross-linking of UV-curable polyurethane acrylate (PUA) resin and reactive ion etching (RIE). During photopolymerization, the cured PUA film is divided into two domains of randomly distributed macromers and oligomers due to a relatively short exposure time of 20 s at ambient conditions. Using the macromer domain as an etch-mask, dry etching was subsequently carried out to remove the oligomer domain, leaving behind a nanoturf surface with tunable roughness. UV-vis spectroscopy measurements demonstrate that transmittance of a nanoturf surface is enhanced up to 92.5% as compared to a flat PUA surface (89.5%). In addition, measurements of contact angle (CA) reveal that the etched surface shows superhydrophilicity with a CA as small as 5 degrees. To seek potential applications, I-V characteristics of a thin film organic solar cell were measured under various testing conditions. It is shown that the efficiency can be increased to 2.9% when a nanoturf film with the surface roughness of 34.73 nm is attached to indium tin oxide (ITO) glass. More importantly, the performance is maintained even in the presence of water owing to superhydrophilic nature of the film.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA