RESUMEN
The vertebrate lens provides an excellent model with which to study the mechanisms required for epithelial invagination. In the mouse, the lens forms from the head surface ectoderm. A domain of ectoderm first thickens to form the lens placode and then invaginates to form the lens pit. The epithelium of the lens placode remains in close apposition to the epithelium of the presumptive retina as these structures undergo a coordinated invagination. Here, we show that F-actin-rich basal filopodia that link adjacent presumptive lens and retinal epithelia function as physical tethers that coordinate invagination. The filopodia, most of which originate in the presumptive lens, form at E9.5 when presumptive lens and retinal epithelia first come into close contact, and have retracted by E11.5 when invagination is complete. At E10.5--the lens pit stage--there is approximately one filopodium per epithelial cell. Formation of filopodia is dependent on the Rho family GTPase Cdc42 and the Cdc42 effector IRSp53 (Baiap2). Loss of filopodia results in reduced lens pit invagination. Pharmacological manipulation of the actin-myosin contraction pathway showed that the filopodia can respond rapidly in length to change inter-epithelial distance. These data suggest that the lens-retina inter-epithelial filopodia are a fine-tuning mechanism to assist in lens pit invagination by transmitting the forces between presumptive lens and retina. Although invagination of the archenteron in sea urchins and dorsal closure in Drosophila are known to be partly dependent on filopodia, this mechanism of morphogenesis has not previously been identified in vertebrates.
Asunto(s)
Cristalino/embriología , Seudópodos/metabolismo , Retina/embriología , Actinas/metabolismo , Animales , Quinasa 1 de Adhesión Focal/metabolismo , Cristalino/citología , Ratones , Miosinas/metabolismo , Retina/citología , Organismos Libres de Patógenos EspecíficosRESUMEN
How cone synapses encode light intensity determines the precision of information transmission at the first synapse on the visual pathway. Although it is known that cone photoreceptors hyperpolarize to light over 4-5 log units of intensity, the relationship between light intensity and transmitter release at the cone synapse has not been determined. Here, we use two-photon microscopy to visualize release of the synaptic vesicle dye FM1-43 from cone terminals in the intact lizard retina, in response to different stimulus light intensities. We then employ electron microscopy to translate these measurements into vesicle release rates. We find that from darkness to bright light, release decreases from 49 to approximately 2 vesicles per 200 ms; therefore, cones compress their 10,000-fold operating range for phototransduction into a 25-fold range for synaptic vesicle release. Tonic release encodes ten distinguishable intensity levels, skewed to most finely represent bright light, assuming release obeys Poisson statistics.
Asunto(s)
Luz , Células Fotorreceptoras Retinianas Conos/fisiología , Células Fotorreceptoras Retinianas Conos/efectos de la radiación , Sinapsis/fisiología , Visión Ocular/fisiología , Vías Visuales/fisiología , Animales , Relación Dosis-Respuesta en la Radiación , Colorantes Fluorescentes/farmacocinética , Colorantes Fluorescentes/efectos de la radiación , Técnicas In Vitro , Lagartos , Distribución de Poisson , Compuestos de Piridinio/farmacocinética , Compuestos de Piridinio/efectos de la radiación , Compuestos de Amonio Cuaternario/farmacocinética , Compuestos de Amonio Cuaternario/efectos de la radiación , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/fisiologíaRESUMEN
Rod and cone photoreceptors use specialized biochemistry to generate light responses that differ in their sensitivity and kinetics. However, it is unclear whether there are also synaptic differences that affect the transmission of visual information. Here, we report that in the dark, rods tonically release synaptic vesicles at a much slower rate than cones, as measured by the release of the fluorescent vesicle indicator FM1-43. To determine whether slower release results from a lower Ca2+ sensitivity or a lower dark concentration of Ca2+, we imaged fluorescent indicators of synaptic vesicle cycling and intraterminal Ca2+. We report that the Ca2+ sensitivity of release is indistinguishable in rods and cones, consistent with their possessing similar release machinery. However, the dark intraterminal Ca2+ concentration is lower in rods than in cones, as determined by two-photon Ca2+ imaging. The lower level of dark Ca2+ ensures that rods encode intensity with a slower vesicle release rate that is better matched to the lower information content of dim light.
Asunto(s)
Señalización del Calcio/fisiología , Adaptación a la Oscuridad/fisiología , Células Fotorreceptoras Retinianas Conos/metabolismo , Células Fotorreceptoras Retinianas Bastones/metabolismo , Transmisión Sináptica/fisiología , Vesículas Sinápticas/metabolismo , Ambystoma/anatomía & histología , Ambystoma/fisiología , Animales , Calcio/metabolismo , Recuperación de Fluorescencia tras Fotoblanqueo , Fura-2/análogos & derivados , Fura-2/farmacología , Lagartos/anatomía & histología , Lagartos/fisiología , Microscopía Electrónica de Transmisión , Compuestos de Piridinio/metabolismo , Compuestos de Amonio Cuaternario/metabolismo , Tiempo de Reacción , Células Fotorreceptoras Retinianas Conos/ultraestructura , Células Fotorreceptoras Retinianas Bastones/ultraestructura , Especificidad de la Especie , Vesículas Sinápticas/ultraestructura , Factores de Tiempo , Visión Ocular/fisiologíaRESUMEN
Retinal cones are depolarized in darkness, keeping voltage-gated Ca2+ channels open and sustaining exocytosis of synaptic vesicles. Light hyperpolarizes the membrane potential, closing Ca2+ channels and suppressing exocytosis. Here, we quantify the Ca2+ concentration in cone terminals, with Ca2+ indicator dyes. Two-photon ratiometric imaging of fura-2 shows that global Ca2+ averages approximately 360 nM in darkness and falls to approximately 190 nM in bright light. Depolarizing cones from their light to their dark membrane potential reveals hot spots of Ca2+ that co-label with a fluorescent probe for the synaptic ribbon protein ribeye, consistent with tight localization of Ca2+ channels near ribbons. Measurements with a low-affinity Ca2+ indicator show that the local Ca2+ concentration near the ribbon exceeds 4 M in darkness. The high level of Ca2+ near the ribbon combined with previous estimates of the Ca2+ sensitivity of release leads to a predicted dark release rate that is much faster than observed, suggesting that the cone synapse operates in a maintained state of synaptic depression in darkness.
Asunto(s)
Calcio/fisiología , Luz , Terminales Presinápticos/fisiología , Terminales Presinápticos/efectos de la radiación , Células Fotorreceptoras Retinianas Conos/fisiología , Células Fotorreceptoras Retinianas Conos/efectos de la radiación , Ambystoma , Animales , Electrofisiología , Exocitosis/fisiología , Procesamiento de Imagen Asistido por Computador , Técnicas In Vitro , Lagartos , Potenciales de la Membrana/fisiología , Potenciales de la Membrana/efectos de la radiación , Microscopía Confocal , Técnicas de Placa-Clamp , Transmisión Sináptica/fisiologíaRESUMEN
Here, we illustrate an optical method for directly measuring the light-regulated synaptic output of neurons in the retina. The method allows simultaneous recording from many retinal neurons in intact flat-mount preparations of the vertebrate retina. These recordings depend on the use of FM1-43, an activity-dependent fluorescent dye that selectively labels synaptic vesicles. Release of the dye, which occurs upon vesicle exocytosis, is detected with 2-photon microscopy. This utilizes an infrared laser to trigger fluorescence excitation of the dye, while minimally perturbing retinal activity by activating phototransduction in rods and cones. Using this approach, one can measure activity of single neurons in the intact retinal network and populations of neurons in different layers of the retina, providing a new way to examine the function of retinal synapses and how visual information is processed.
Asunto(s)
Compuestos de Piridinio/metabolismo , Compuestos de Amonio Cuaternario/metabolismo , Retina/ultraestructura , Vesículas Sinápticas/fisiología , Animales , Colorantes Fluorescentes , Lagartos , Microscopía Electrónica , Neuronas/metabolismo , Neuronas/ultraestructura , Retina/metabolismo , Sinapsis/metabolismo , Sinapsis/fisiología , Transmisión Sináptica/fisiología , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/ultraestructuraRESUMEN
PURPOSE: The lens is a powerful model system to study integrin-mediated cell-matrix interaction in an in vivo context, as it is surrounded by a true basement membrane, the lens capsule. To characterize better the function of integrin-linked kinase (ILK), we examined the phenotypic consequences of its deletion in the developing mouse lens. METHODS: ILK was deleted from the embryonic lens either at the time of placode invagination using the Le-Cre line or after initial lens formation using the Nestin-Cre line. RESULTS: Early deletion of ILK leads to defects in extracellular matrix deposition that result in lens capsule rupture at the lens vesicle stage (E13.5). If ILK was deleted at a later time-point after initial establishment of the lens capsule, rupture was prevented. Instead, ILK deletion resulted in secondary fiber migration defects and, most notably, in cell death of the anterior epithelium (E18.5-P0). Remarkably, dying cells did not stain positively for terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) or activated-caspase 3, suggesting that they were dying from a non-apoptotic mechanism. Moreover, cross to a Bax(fl/fl)/Bakâ»/â» mouse line that is resistant to most forms of apoptosis failed to promote cell survival in the ILK-deleted lens epithelium. Electron microscopy revealed the presence of numerous membranous vacuoles containing degrading cellular material. CONCLUSIONS. Our study reveals a role for ILK in extracellular matrix organization, fiber migration, and cell survival. Furthermore, to our knowledge we show for the first time that ILK disruption results in non-apoptotic cell death in vivo.
Asunto(s)
Células Epiteliales/patología , Eliminación de Gen , Cápsula del Cristalino/embriología , Cápsula del Cristalino/patología , Proteínas Serina-Treonina Quinasas/genética , Animales , Cápsula Anterior del Cristalino/lesiones , Cápsula Anterior del Cristalino/patología , Cadherinas/metabolismo , Muerte Celular/genética , Muerte Celular/fisiología , Movimiento Celular/fisiología , Colágeno Tipo IV/metabolismo , Epitelio/metabolismo , Proteínas del Ojo/metabolismo , Fibronectinas/metabolismo , Proteínas de Homeodominio/metabolismo , Laminina/metabolismo , Cápsula del Cristalino/lesiones , Ratones , Ratones Transgénicos , Microscopía Electrónica , Microscopía Electrónica de Transmisión , Factor de Transcripción PAX6 , Factores de Transcripción Paired Box/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Represoras/metabolismo , Rotura , Regulación hacia Arriba , Vacuolas/patologíaRESUMEN
Cone photoreceptors distinguish small changes in light intensity while operating over a wide dynamic range. The cone synapse encodes intensity by modulating tonic neurotransmitter release, but precise encoding is limited by the quantal nature of synaptic vesicle exocytosis. Cones possess synaptic ribbons, structures that are thought to accelerate the delivery of vesicles for tonic release. Here we show that the synaptic ribbon actually constrains vesicle delivery, resulting in a maintained state of synaptic depression in darkness. Electron microscopy of cones from the lizard Anolis segrei revealed that depression is caused by the depletion of vesicles on the ribbon, indicating that resupply, not fusion, is the rate-limiting step that controls release. Responses from postsynaptic retinal neurons from the salamander Ambystoma tigrinum showed that the ribbon behaves like a capacitor, charging with vesicles in light and discharging in a phasic burst at light offset. Phasic release extends the operating range of the cone synapse to more accurately encode changes in light intensity, accentuating features that are salient to photopic vision.