Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Molecules ; 28(3)2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36770709

RESUMEN

1. Diabetic chronic wounds, mainly foot ulcers, constitute one of the most common complications of poorly managed diabetes mellitus. The most typical reasons are insufficient glycemic management, latent neuropathy, peripheral vascular disease, and neglected foot care. In addition, it is a common cause of foot osteomyelitis and amputation of the lower extremities. Patients are admitted in larger numbers attributable to chronic wounds compared to any other diabetic disease. In the United States, diabetes is currently the most common cause of non-traumatic amputations. Approximately five percent of diabetics develop foot ulcers, and one percent require amputation. Therefore, it is necessary to identify sources of lead with wound-healing properties. Redox imbalance due to excessive oxidative stress is one of the causes for the development of diabetic wounds. Antioxidants have been shown to decrease the progression of diabetic neuropathy by scavenging ROS, regenerating endogenous and exogenous antioxidants, and reversing redox imbalance. Matrix metalloproteinases (MMPs) play vital roles in numerous phases of the wound healing process. Antioxidant and fibroblast cell migration activity of Marantodes pumilum (MP) crude extract has previously been reported. Through their antioxidant, epithelialization, collagen synthesis, and fibroblast migration activities, the authors hypothesise that naringin, eicosane and octacosane identified in the MP extract may have wound-healing properties. 2. The present study aims to identify the bioactive components present in the dichloromethane (DCM) extract of M. pumilum and evaluate their antioxidant and wound healing activity. Bioactive components were identified using LCMS, HPTLC and GCMS. Excision wound on STZ-induced diabetic rat model, human dermal fibroblast (HDF) cell line and colorimetric antioxidant assays were used to evaluate wound healing and antioxidant activities, respectively. Molecular docking and pkCMS software would be utilised to predict binding energy and affinity, as well as ADME parameters. 3. Naringin (NAR), eicosane (EIC), and octacosane (OCT) present in MP displayed antioxidant action and wound excision closure. Histological examination HDF cell line demonstrates epithelialization, collagen production, fibroblast migration, polymorphonuclear leukocyte migration (PNML), and fibroblast movement. The results of molecular docking indicate a substantial attraction and contact between MMPs. pkCMS prediction indicates inadequate blood-brain barrier permeability, low toxicity, and absence of hepatotoxicity. 4. Wound healing properties of (NEO) naringin, eicosane and octacosane may be the result of their antioxidant properties and possible interactions with MMP.


Asunto(s)
Pie Diabético , Humanos , Ratas , Animales , Pie Diabético/tratamiento farmacológico , Antioxidantes/farmacología , Simulación del Acoplamiento Molecular , Cicatrización de Heridas , Colágeno , Metaloproteinasas de la Matriz
2.
Genomics ; 112(6): 3915-3924, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32629096

RESUMEN

The role of microbiota in gut-brain communication has led to the development of probiotics promoting brain health. Here we report a genomic study of a Lactobacillus fermentum PS150 and its patented bioactive protein, elongation factor Tu (EF-Tu), which is associated with cognitive improvement in rats. The L. fermentum PS150 circular chromosome is 2,238,401 bp and it consists of 2281 genes. Chromosome comparisons with other L. fermentum strains highlighted a cluster of glycosyltransferases as potential candidate probiotic factors besides EF-Tu. Molecular evolutionary analyses on EF-Tu genes (tuf) in 235 bacteria species revealed one to three copies of the gene per genome. Seven tuf pseudogenes were found and three species only possessed pseudogenes, which is an unprecedented finding. Protein variability analysis of EF-Tu showed five highly variable residues (40 K, 41G, 42 L, 44 K, and 46E) on the protein surface, which warrant further investigation regarding their potential roles as binding sites.


Asunto(s)
Encéfalo/fisiología , Evolución Molecular , Limosilactobacillus fermentum/química , Factor Tu de Elongación Peptídica/química , Proteínas/química , Humanos , Conformación Proteica
3.
Int J Mol Sci ; 22(16)2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34445667

RESUMEN

Spinal muscular atrophy (SMA), one of the leading inherited causes of child mortality, is a rare neuromuscular disease arising from loss-of-function mutations of the survival motor neuron 1 (SMN1) gene, which encodes the SMN protein. When lacking the SMN protein in neurons, patients suffer from muscle weakness and atrophy, and in the severe cases, respiratory failure and death. Several therapeutic approaches show promise with human testing and three medications have been approved by the U.S. Food and Drug Administration (FDA) to date. Despite the shown promise of these approved therapies, there are some crucial limitations, one of the most important being the cost. The FDA-approved drugs are high-priced and are shortlisted among the most expensive treatments in the world. The price is still far beyond affordable and may serve as a burden for patients. The blooming of the biomedical data and advancement of computational approaches have opened new possibilities for SMA therapeutic development. This article highlights the present status of computationally aided approaches, including in silico drug repurposing, network driven drug discovery as well as artificial intelligence (AI)-assisted drug discovery, and discusses the future prospects.


Asunto(s)
Atrofia Muscular Espinal/tratamiento farmacológico , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/fisiopatología , Animales , Biología Computacional/métodos , Biología Computacional/tendencias , Modelos Animales de Enfermedad , Descubrimiento de Drogas/métodos , Descubrimiento de Drogas/tendencias , Reposicionamiento de Medicamentos/métodos , Reposicionamiento de Medicamentos/tendencias , Humanos , Neuronas Motoras/metabolismo , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo
4.
Int J Mol Sci ; 21(16)2020 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-32824277

RESUMEN

In this study, we hypothesized that different strains of Lactobacillus can alleviate hyperlipidemia and liver steatosis via activation of 5' adenosine monophosphate-activated protein kinase (AMPK), an enzyme that is involved in cellular energy homeostasis, in aged rats. Male rats were fed with a high-fat diet (HFD) and injected with D-galactose daily over 12 weeks to induce aging. Treatments included (n = 6) (i) normal diet (ND), (ii) HFD, (iii) HFD-statin (lovastatin 2 mg/kg/day), (iv) HFD-Lactobacillus fermentum DR9 (10 log CFU/day), (v) HFD-Lactobacillus plantarum DR7 (10 log CFU/day), and (vi) HFD-Lactobacillus reuteri 8513d (10 log CFU/day). Rats administered with statin, DR9, and 8513d reduced serum total cholesterol levels after eight weeks (p < 0.05), while the administration of DR7 reduced serum triglycerides level after 12 weeks (p < 0.05) as compared to the HFD control. A more prominent effect was observed from the administration of DR7, where positive effects were observed, ranging from hepatic gene expressions to liver histology as compared to the control (p < 0.05); downregulation of hepatic lipid synthesis and ß-oxidation gene stearoyl-CoA desaturase 1 (SCD1), upregulation of hepatic sterol excretion genes of ATP-binding cassette subfamily G member 5 and 8 (ABCG5 and ABCG8), lesser degree of liver steatosis, and upregulation of hepatic energy metabolisms genes AMPKα1 and AMPKα2. Taken altogether, this study illustrated that the administration of selected Lactobacillus strains led to improved lipid profiles via activation of energy and lipid metabolisms, suggesting the potentials of Lactobacillus as a promising natural intervention for alleviation of cardiovascular and liver diseases.


Asunto(s)
Envejecimiento/metabolismo , Hígado Graso/terapia , Hiperlipidemias/terapia , Probióticos/uso terapéutico , Proteínas Quinasas/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 5/genética , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 5/metabolismo , Transportador de Casete de Unión a ATP, Subfamilia G, Miembro 8/genética , Transportador de Casete de Unión a ATP, Subfamilia G, Miembro 8/metabolismo , Envejecimiento/patología , Animales , Anticolesterolemiantes/farmacología , Lactobacillus/patogenicidad , Metabolismo de los Lípidos , Lipoproteínas/genética , Lipoproteínas/metabolismo , Hígado/efectos de los fármacos , Hígado/crecimiento & desarrollo , Hígado/metabolismo , Masculino , Probióticos/administración & dosificación , Proteínas Quinasas/genética , Ratas , Ratas Sprague-Dawley , Estearoil-CoA Desaturasa/genética , Estearoil-CoA Desaturasa/metabolismo , Regulación hacia Arriba
5.
J Chem Inf Model ; 59(5): 2487-2495, 2019 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-30840452

RESUMEN

Isocitrate lyase (ICL) is a persistent factor for the survival of dormant stage Mycobacterium tuberculosis (MTB), thus a potential drug target for tuberculosis treatment. In this work, ensemble docking approach was used to screen for potential inhibitors of ICL. The ensemble conformations of ICL active site were obtained from molecular dynamics simulation on three dimer form systems, namely the apo ICL, ICL in complex with metabolites (glyoxylate and succinate), and ICL in complex with substrate (isocitrate). Together with the ensemble conformations and the X-ray crystal structures, 22 structures were used for the screening against Malaysian Natural Compound Database (NADI). The top 10 compounds for each ensemble conformation were selected. The number of compounds was then further narrowed down to 22 compounds that were within the Lipinski's Rule of Five for drug-likeliness and were also docked into more than one ensemble conformation. Theses 22 compounds were furthered evaluate using whole cell assay. Some compounds were not commercially available; therefore, plant crude extracts were used for the whole cell assay. Compared to itaconate (the known inhibitor of ICL), crude extracts from Manilkara zapota, Morinda citrifolia, Vitex negundo, and Momordica charantia showed some inhibition activity. The MIC/MBC value were 12.5/25, 12.5/25, 0.78/1.6, and 0.39/1.6 mg/mL, respectively. This work could serve as a preliminary study in order to narrow the scope for high throughput screening in the future.


Asunto(s)
Bases de Datos Farmacéuticas , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacología , Isocitratoliasa/antagonistas & inhibidores , Isocitratoliasa/metabolismo , Simulación del Acoplamiento Molecular , Mycobacterium tuberculosis/enzimología , Dominio Catalítico , Evaluación Preclínica de Medicamentos , Isocitratoliasa/química
6.
J Dairy Sci ; 102(6): 4783-4797, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30954261

RESUMEN

The aims of this study were to investigate the effects of Lactobacillus plantarum DR7 isolated from bovine milk against upper respiratory tract infections (URTI) and elucidate the possible mechanisms underlying immunomodulatory properties. The DR7 strain (9 log cfu/d) was administered for 12 wk in a randomized, double-blind, and placebo-controlled human study involving 109 adults (DR7, n = 56; placebo, n = 53). Subjects were assessed for health conditions monthly via questionnaires, and blood samples were evaluated for cytokine concentrations, peroxidation and oxidative stress, and gene expression in T cells and natural killer (NK) cells. The administration of DR7 reduced the duration of nasal symptoms (mean difference 5.09 d; 95% CI: 0.42-9.75) and the frequency of URTI (mean difference 0.32; 95% CI: 0.01-0.63) after 12 and 4 wk, respectively, compared with the placebo. The DR7 treatment suppressed plasma proinflammatory cytokines (IFN-γ, TNF-α) in middle-aged adults (30 to 60 yr old), while enhancing anti-inflammatory cytokines (IL-4, IL-10) in young adults (<30 yr old), accompanied by reduced plasma peroxidation and oxidative stress levels compared with the placebo. Young adults who received DR7 showed higher expression of plasma CD44 and CD117 by 4.50- and 2.22-fold, respectively, compared with the placebo. Meanwhile, middle-aged adults showed lower expression of plasma CD4 and CD8 by 11.26- and 1.80-fold, respectively, compared with the placebo, indicating less T-cell activation. In contrast, both young and middle-aged adults who received DR7 showed enhanced presence of nonresting and mature NK cells compared with those who received the placebo. We postulate that DR7 alleviated the symptoms of URTI by improving inflammatory parameters and enhancing immunomodulatory properties.


Asunto(s)
Lactobacillus plantarum , Leche , Probióticos , Infecciones del Sistema Respiratorio , Adolescente , Adulto , Animales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven , Citocinas/inmunología , Método Doble Ciego , Interleucina-10/inmunología , Células Asesinas Naturales/inmunología , Lactobacillus plantarum/inmunología , Leche/microbiología , Probióticos/uso terapéutico , Infecciones del Sistema Respiratorio/inmunología , Infecciones del Sistema Respiratorio/terapia
7.
J Chem Inf Model ; 57(9): 2351-2357, 2017 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-28820943

RESUMEN

Tuberculosis (TB) still remains a global threat due to the emergence of a drug-resistant strain. Instead of focusing on the drug target of active stage TB, we are highlighting the isocitrate lyase (ICL) at the dormant stage TB. ICL is one of the persistent factors for Mycobacterium tuberculosis (MTB) to survive during the dormant phase. In addition, the absence of ICL in human has made ICL a potential drug target for TB therapy. However, the dynamic details of ICL which could give insights to the ICL-ligand interaction have yet to be solved. Therefore, a series of ICL dimer dynamics studies through molecular dynamics simulation were performed in this work. The ICL active site entrance gate closure is contributed to by hydrogen bonding and electrostatic interactions with the C-terminal. Analysis suggested that the open-closed behavior of the ICL active site entrance depends on the type of ligand present in the active site. We also observed four residues (Ser91, Asp108, Asp153, and Cys191) which could possibly be the nucleophiles for nucleophilic attack on the cleavage of isocitrate at the C2-C3 bond. We hope that the elucidation of ICL dynamics can benefit future works such as lead identification or antibody design against ICL for TB therapeutics.


Asunto(s)
Dominio Catalítico , Isocitratoliasa/química , Simulación de Dinámica Molecular , Mycobacterium tuberculosis/enzimología , Multimerización de Proteína , Isocitratoliasa/metabolismo , Estructura Cuaternaria de Proteína
8.
Crit Rev Biotechnol ; 35(3): 392-401, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-24575869

RESUMEN

Probiotic microorganisms have been documented over the past two decades to play a role in cholesterol-lowering properties via various clinical trials. Several mechanisms have also been proposed and the ability of these microorganisms to deconjugate bile via production of bile salt hydrolase (BSH) has been widely associated with their cholesterol lowering potentials in prevention of hypercholesterolemia. Deconjugated bile salts are more hydrophobic than their conjugated counterparts, thus are less reabsorbed through the intestines resulting in higher excretion into the feces. Replacement of new bile salts from cholesterol as a precursor subsequently leads to decreased serum cholesterol levels. However, some controversies have risen attributed to the activities of deconjugated bile acids that repress the synthesis of bile acids from cholesterol. Deconjugated bile acids have higher binding affinity towards some orphan nuclear receptors namely the farsenoid X receptor (FXR), leading to a suppressed transcription of the enzyme cholesterol 7-alpha hydroxylase (7AH), which is responsible in bile acid synthesis from cholesterol. This notion was further corroborated by our current docking data, which indicated that deconjugated bile acids have higher propensities to bind with the FXR receptor as compared to conjugated bile acids. Bile acids-activated FXR also induces transcription of the IBABP gene, leading to enhanced recycling of bile acids from the intestine back to the liver, which subsequently reduces the need for new bile formation from cholesterol. Possible detrimental effects due to increased deconjugation of bile salts such as malabsorption of lipids, colon carcinogenesis, gallstones formation and altered gut microbial populations, which contribute to other varying gut diseases, were also included in this review. Our current findings and review substantiate the need to look beyond BSH deconjugation as a single factor/mechanism in strain selection for hypercholesterolemia, and/or as a sole mean to justify a cholesterol-lowering property of probiotic strains.


Asunto(s)
Amidohidrolasas , Colesterol , Probióticos , Animales , Colesterol/sangre , Colesterol/metabolismo , Humanos , Ratones , Microbiota
9.
BMC Struct Biol ; 14: 7, 2014 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-24499172

RESUMEN

BACKGROUND: Klebsiella pneumoniae plays a major role in causing nosocomial infection in immunocompromised patients. Medical inflictions by the pathogen can range from respiratory and urinary tract infections, septicemia and primarily, pneumonia. As more K. pneumoniae strains are becoming highly resistant to various antibiotics, treatment of this bacterium has been rendered more difficult. This situation, as a consequence, poses a threat to public health. Hence, identification of possible novel drug targets against this opportunistic pathogen need to be undertaken. In the complete genome sequence of K. pneumoniae MGH 78578, approximately one-fourth of the genome encodes for hypothetical proteins (HPs). Due to their low homology and relatedness to other known proteins, HPs may serve as potential, new drug targets. RESULTS: Sequence analysis on the HPs of K. pneumoniae MGH 78578 revealed that a particular HP termed KPN_00953 (YcbK) contains a M15_3 peptidases superfamily conserved domain. Some members of this superfamily are metalloproteases which are involved in cell wall metabolism. BLASTP similarity search on KPN_00953 (YcbK) revealed that majority of the hits were hypothetical proteins although two of the hits suggested that it may be a lipoprotein or related to twin-arginine translocation (Tat) pathway important for transport of proteins to the cell membrane and periplasmic space. As lipoproteins and other components of the cell wall are important pathogenic factors, homology modeling of KPN_00953 was attempted to predict the structure and function of this protein. Three-dimensional model of the protein showed that its secondary structure topology and active site are similar with those found among metalloproteases where two His residues, namely His169 and His209 and an Asp residue, Asp176 in KPN_00953 were found to be Zn-chelating residues. Interestingly, induced expression of the cloned KPN_00953 gene in lipoprotein-deficient E. coli JE5505 resulted in smoother cells with flattened edges. Some cells showed deposits of film-like material under scanning electron microscope. CONCLUSIONS: We postulate that KPN_00953 is a Zn metalloprotease and may play a role in bacterial cell wall metabolism. Structural biology studies to understand its structure, function and mechanism of action pose the possibility of utilizing this protein as a new drug target against K. pneumoniae in the future.


Asunto(s)
Pared Celular/metabolismo , Klebsiella pneumoniae/química , Metaloproteasas/química , Metaloproteasas/metabolismo , Zinc/metabolismo , Secuencia de Aminoácidos , Asparagina/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Secuencia Conservada , Evolución Molecular , Genoma Bacteriano , Histidina/metabolismo , Klebsiella pneumoniae/metabolismo , Modelos Moleculares , Conformación Proteica , Estructura Secundaria de Proteína , Alineación de Secuencia
10.
Int J Mol Sci ; 15(5): 7225-49, 2014 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-24776765

RESUMEN

Fevicordin-A (FevA) isolated from Phaleria macrocarpa (Scheff) Boerl. seeds was evaluated for its potential anticancer activity by in vitro and in silico approaches. Cytotoxicity studies indicated that FevA was selective against cell lines of human breast adenocarcinoma (MCF-7) with an IC50 value of 6.4 µM. At 11.2 µM, FevA resulted in 76.8% cell death of T-47D human breast cancer cell lines. Critical pharmacophore features amongst human Estrogen Receptor-α (hERα) antagonists were conserved in FevA with regard to a hypothesis that they could make notable contributions to its pharmacological activity. The binding stability as well as the dynamic behavior of FevA towards the hERα receptor in agonist and antagonist binding sites were probed using molecular dynamics (MD) simulation approach. Analysis of MD simulation suggested that the tail of FevA was accountable for the repulsion of the C-terminal of Helix-11 (H11) in both agonist and antagonist receptor forms. The flexibility of loop-534 indicated the ability to disrupt the hydrogen bond zipper network between H3 and H11 in hERα. In addition, MM/GBSA calculation from the molecular dynamic simulations also revealed a stronger binding affinity of FevA in antagonistic action as compared to that of agonistic action. Collectively, both the experimental and computational results indicated that FevA has potential as a candidate for an anticancer agent, which is worth promoting for further preclinical evaluation.


Asunto(s)
Adenocarcinoma/tratamiento farmacológico , Antineoplásicos Fitogénicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Cucurbitacinas/farmacología , Antagonistas del Receptor de Estrógeno/farmacología , Thymelaeaceae/química , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Mama/efectos de los fármacos , Mama/metabolismo , Mama/patología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Cucurbitacinas/química , Cucurbitacinas/aislamiento & purificación , Antagonistas del Receptor de Estrógeno/química , Antagonistas del Receptor de Estrógeno/aislamiento & purificación , Receptor alfa de Estrógeno/química , Receptor alfa de Estrógeno/metabolismo , Femenino , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Semillas/química , Termodinámica
11.
J Biomol Struct Dyn ; 42(6): 3223-3232, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37286382

RESUMEN

α-Mangostin is the most abundant compound contained in the mangostin (Garcinia mangostana L.) plant which have been developed and proven to have many promising pharmacological effects. However, the low water solubility of α-mangostin causes limitations in its development in clinical purpose. To increase the solubility of a compound, a method currently being developed is to make drug inclusion complexes using cyclodextrins. This research aimed to use in silico techniques namely molecular docking study and molecular dynamics simulation to explore the molecular mechanism and stability of the encapsulation of α-mangostin using cyclodextrins. Two types of cyclodextrins were used including ß-cyclodextrin and 2-hydroxypropyl-ß-cyclodextrin docked against α-mangostin. From the molecular docking results, it shows that the α-mangostin complex with 2-hydroxypropyl-ß-cyclodextrin provides the lowest binding energy value of -7.99 Kcal/mol compared to ß-cyclodextrin value of -6.14 Kcal/mol. The α-mangostin complex with 2-hydroxypropyl-ß-cyclodextrin also showed good stability based on molecular dynamics simulation during 100 ns. From molecular motion, RDF, Rg, SASA, density, total energy analyzes, this complex shows increased solubility in water and provided good stability. This indicates that the encapsulation of α-mangostin with 2-hydroxypropyl-ß-cyclodextrin can increase the solubility of the α-mangostin.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Ciclodextrinas , Xantonas , beta-Ciclodextrinas , 2-Hidroxipropil-beta-Ciclodextrina/química , Solubilidad , Simulación del Acoplamiento Molecular , beta-Ciclodextrinas/química , Ciclodextrinas/química , Agua/química
12.
Pharmaceuticals (Basel) ; 17(1)2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38256941

RESUMEN

Tumour-associated angiogenesis play key roles in tumour growth and cancer metastasis. Consequently, several anti-angiogenic drugs such as sunitinib and axitinib have been approved for use as anti-cancer therapies. However, the majority of these drugs target the vascular endothelial growth factor A (VEGFA)/VEGF receptor 2 (VEGFR2) pathway and have shown mixed outcome, largely due to development of resistances and increased tumour aggressiveness. In this study, we used the zebrafish model to screen for novel anti-angiogenic molecules from a library of compounds derived from natural products. From this, we identified canthin-6-one, an indole alkaloid, which inhibited zebrafish intersegmental vessel (ISV) and sub-intestinal vessel development. Further characterisation revealed that treatment of canthin-6-one reduced ISV endothelial cell number and inhibited proliferation of human umbilical vein endothelial cells (HUVECs), suggesting that canthin-6-one inhibits endothelial cell proliferation. Of note, canthin-6-one did not inhibit VEGFA-induced phosphorylation of VEGFR2 in HUVECs and downstream phosphorylation of extracellular signal-regulated kinase (Erk) in leading ISV endothelial cells in zebrafish, suggesting that canthin-6-one inhibits angiogenesis independent of the VEGFA/VEGFR2 pathway. Importantly, we found that canthin-6-one impairs tumour-associated angiogenesis in a zebrafish B16F10 melanoma cell xenograft model and synergises with VEGFR inhibitor sunitinib malate to inhibit developmental angiogenesis. In summary, we showed that canthin-6-one exhibits anti-angiogenic properties in both developmental and pathological contexts in zebrafish, independent of the VEGFA/VEGFR2 pathway and demonstrate that canthin-6-one may hold value for further development as a novel anti-angiogenic drug.

13.
Comput Struct Biotechnol J ; 21: 4096-4109, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37671240

RESUMEN

Computational methods coupled with experimental validation play a critical role in the identification of novel inhibitory peptides that interact with viral antigenic determinants. The interaction between the receptor binding domain (RBD) of SARS-CoV-2 spike protein and the helical peptide of human angiotensin-converting enzyme-2 (ACE2) is a necessity for the initiation of viral infection. Herein, natural orthologs of human ACE2 helical peptide were evaluated for competitive inhibitory binding to the viral RBD by use of a computational approach, which was experimentally validated. A total of 624 natural ACE2 orthologous 32-amino acid long peptides were identified through a similarity search. Molecular docking was used to virtually screen and rank the peptides based on binding affinity metrics, benchmarked against human ACE2 peptide docked to the RBD. Molecular dynamics (MD) simulations were done for the human reference and the Nipponia nippon peptide as it exhibited the highest binding affinity (Gibbs free energy; -14 kcal/mol) predicted from the docking results. The MD simulation confirmed the stability of the assessed peptide in the complex (-12.3 kcal/mol). The top three docked-peptides (from Chitinophaga sancti, Nipponia nippon, and Mus musculus) and the human reference were experimentally validated by use of surface plasmon resonance technology. The human reference exhibited the weakest binding affinity (Kd of 318-441 pM) among the peptides tested, in agreement with the docking prediction, while the peptide from Nipponia nippon was the best, with 267-538-fold higher affinity than the reference. The validated peptides merit further investigation. This work showcases that the approach herein can aid in the identification of inhibitory biosimilar peptides for other viruses.

14.
Int J Mol Sci ; 13(1): 901-917, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22312293

RESUMEN

Klebsiella pneumoniae is a Gram-negative, cylindrical rod shaped opportunistic pathogen that is found in the environment as well as existing as a normal flora in mammalian mucosal surfaces such as the mouth, skin, and intestines. Clinically it is the most important member of the family of Enterobacteriaceae that causes neonatal sepsis and nosocomial infections. In this work, a combination of protein sequence analysis, structural modeling and molecular docking simulation approaches were employed to provide an understanding of the possible functions and characteristics of a hypothetical protein (KPN_02809) from K. pneumoniae MGH 78578. The computational analyses showed that this protein was a metalloprotease with zinc binding motif, HEXXH. To verify this result, a ypfJ gene which encodes for this hypothetical protein was cloned from K. pneumoniae MGH 78578 and the protein was overexpressed in Escherichia coli BL21 (DE3). The purified protein was about 32 kDa and showed maximum protease activity at 30 °C and pH 8.0. The enzyme activity was inhibited by metalloprotease inhibitors such as EDTA, 1,10-phenanthroline and reducing agent, 1,4-dithiothreitol (DTT). Each molecule of KPN_02809 protein was also shown to bind one zinc ion. Hence, for the first time, we experimentally confirmed that KPN_02809 is an active enzyme with zinc metalloprotease activity.


Asunto(s)
Klebsiella pneumoniae/enzimología , Metaloproteasas/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Clonación Molecular , Escherichia coli/metabolismo , Concentración de Iones de Hidrógeno , Metaloproteasas/química , Metaloproteasas/genética , Simulación del Acoplamiento Molecular , Datos de Secuencia Molecular , Fenantrolinas/química , Fenantrolinas/metabolismo , Estructura Terciaria de Proteína , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Alineación de Secuencia , Temperatura , Zinc/química
15.
Nutrients ; 14(2)2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-35057455

RESUMEN

Coronavirus disease 2019 (COVID-19) was declared a pandemic at the beginning of 2020, causing millions of deaths worldwide. Millions of vaccine doses have been administered worldwide; however, outbreaks continue. Probiotics are known to restore a stable gut microbiota by regulating innate and adaptive immunity within the gut, demonstrating the possibility that they may be used to combat COVID-19 because of several pieces of evidence suggesting that COVID-19 has an adverse impact on gut microbiota dysbiosis. Thus, probiotics and their metabolites with known antiviral properties may be used as an adjunctive treatment to combat COVID-19. Several clinical trials have revealed the efficacy of probiotics and their metabolites in treating patients with SARS-CoV-2. However, its molecular mechanism has not been unraveled. The availability of abundant data resources and computational methods has significantly changed research finding molecular insights between probiotics and COVID-19. This review highlights computational approaches involving microbiome-based approaches and ensemble-driven docking approaches, as well as a case study proving the effects of probiotic metabolites on SARS-CoV-2.


Asunto(s)
COVID-19/microbiología , COVID-19/terapia , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/fisiología , Probióticos/farmacología , Probióticos/uso terapéutico , Computadores Moleculares , Disbiosis/tratamiento farmacológico , Femenino , Tracto Gastrointestinal/inmunología , Tracto Gastrointestinal/microbiología , Humanos , Masculino , Simulación del Acoplamiento Molecular , Probióticos/metabolismo
16.
BMC Bioinformatics ; 12 Suppl 13: S11, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22372825

RESUMEN

BACKGROUND: Previously, the hypothetical protein, KPN00728 from Klebsiella pneumoniae MGH78578 was the Succinate dehydrogenase (SDH) chain C subunit via structural prediction and molecular docking simulation studies. However, due to limitation in docking simulation, an in-depth understanding of how SDH interaction occurs across the transmembrane of mitochondria could not be provided. RESULTS: In this present study, molecular dynamics (MD) simulation of KPN00728 and SDH chain D in a membrane was performed in order to gain a deeper insight into its molecular role as SDH. Structural stability was successfully obtained in the calculation for area per lipid, tail order parameter, thickness of lipid and secondary structural properties. Interestingly, water molecules were found to be highly possible in mediating the interaction between Ubiquinone (UQ) and SDH chain C via interaction with Ser27 and Arg31 residues as compared with earlier docking study. Polar residues such as Asp95 and Glu101 (KPN00728), Asp15 and Glu78 (SDH chain D) might have contributed in the creation of a polar environment which is essential for electron transport chain in Krebs cycle. CONCLUSIONS: As a conclusion, a part from the structural stability comparability, the dynamic of the interacting residues and hydrogen bonding analysis had further proved that the interaction of KPN00728 as SDH is preserved and well agreed with our postulation earlier.


Asunto(s)
Proteínas Bacterianas/metabolismo , Klebsiella pneumoniae/enzimología , Simulación de Dinámica Molecular , Succinato Deshidrogenasa/metabolismo , Enlace de Hidrógeno , Klebsiella pneumoniae/metabolismo , Succinato Deshidrogenasa/química , Ubiquinona/química , Ubiquinona/metabolismo
17.
Int J Mol Sci ; 12(7): 4441-55, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21845088

RESUMEN

Klebsiella pneumoniae causes neonatal sepsis and nosocomial infections. One of the strains, K. pneumoniae MGH 78578, shows high level of resistance to multiple microbial agents. In this study, domain family, amino acid sequence and topology analyses were performed on one of its hypothetical protein, YggG (KPN_03358). Structural bioinformatics approaches were used to predict the structure and functionality of YggG protein. The open reading frame (ORF) of yggG, which was a putative metalloprotease gene, was also cloned, expressed and characterized. The ORF was PCR amplified from K. pneumoniae MGH 78578 genomic DNA and cloned into a pET14-b vector for heterologous expression in Escherichia coli. The purified YggG protein was subsequently assayed for casein hydrolysis under different conditions. This protein was classified as peptidase M48 family and subclan gluzincin. It was predicted to contain one transmembrane domain by TMpred. Optimal protein expression was achieved by induction with 0.6 mM isopropyl thiogalactoside (IPTG) at 25 °C for six hours. YggG was purified as soluble protein and confirmed to be proteolytically active under the presence of 1.25 mM zinc acetate and showed optimum activity at 37 °C and pH 7.4. We confirmed for the first time that the yggG gene product is a zinc-dependent metalloprotease.


Asunto(s)
Proteínas Bacterianas/metabolismo , Klebsiella pneumoniae/genética , Metaloproteasas/metabolismo , Zinc/química , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Clonación Molecular , Biología Computacional , Escherichia coli/metabolismo , Concentración de Iones de Hidrógeno , Metaloproteasas/química , Metaloproteasas/genética , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Temperatura
18.
Molecules ; 16(12): 10227-55, 2011 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-22158591

RESUMEN

The M2 channel protein on the influenza A virus membrane has become the main target of the anti-flu drugs amantadine and rimantadine. The structure of the M2 channel proteins of the H3N2 (PDB code 2RLF) and 2009-H1N1 (Genbank accession number GQ385383) viruses may help researchers to solve the drug-resistant problem of these two adamantane-based drugs and develop more powerful new drugs against influenza A virus. In the present study, we searched for new M2 channel inhibitors through a combination of different computational methodologies, including virtual screening with docking and pharmacophore modeling. Virtual screening was performed to calculate the free energies of binding between receptor M2 channel proteins and 200 new designed ligands. After that, pharmacophore analysis was used to identify the important M2 protein-inhibitor interactions and common features of top binding compounds with M2 channel proteins. Finally, the two most potential compounds were determined as novel leads to inhibit M2 channel proteins in both H3N2 and 2009-H1N1 influenza A virus.


Asunto(s)
Amantadina/química , Antivirales/farmacología , Evaluación Preclínica de Medicamentos/métodos , Moduladores del Transporte de Membrana/farmacología , Modelos Moleculares , Interfaz Usuario-Computador , Proteínas de la Matriz Viral/antagonistas & inhibidores , Antivirales/química , Sitios de Unión , Enlace de Hidrógeno/efectos de los fármacos , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Subtipo H1N1 del Virus de la Influenza A/metabolismo , Subtipo H3N2 del Virus de la Influenza A/efectos de los fármacos , Subtipo H3N2 del Virus de la Influenza A/metabolismo , Moduladores del Transporte de Membrana/química , Rimantadina/química , Relación Estructura-Actividad , Termodinámica , Proteínas de la Matriz Viral/química
19.
Vaccines (Basel) ; 9(10)2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34696175

RESUMEN

In response to the ongoing COVID-19 pandemic, the global effort to develop high efficacy countermeasures to control the infection are being conducted at full swing. While the efficacy of vaccines and coronavirus drugs are being tested, the microbiome approach represents an alternative pathophysiology-based approach to prevent the severity of the infection. In the current study, we evaluated the action of a novel probiotic Lactobacillus plantarum Probio-88 against SARS-COV-2 replication and immune regulation using an in vitro and in silico study. The results showed that extract from this strain (P88-CFS) significantly inhibited the replication of SARS-COV-2 and the production of reactive oxygen species (ROS) levels. Furthermore, compared with infected cells, P88-CFS treated cells showed a significant reduction in inflammatory markers such as IFN-α, IFN-ß, and IL-6. Using an in silico molecular docking approach, it was postulated that the antiviral activity of L. plantarum Probio-88 was derived from plantaricin E (PlnE) and F (PlnF). The high binding affinity and formation of hydrogen bonding indicated that the association of PlnE and PlnF on SARS-COV-2 helicase might serve as a blocker by preventing the binding of ss-RNA during the replication of the virus. In conclusion, our study substantiated that P88-CFS could be used as an integrative therapeutic approach along with vaccine to contain the spread of the highly infectious pathogen and possibly its variants.

20.
Appl Biochem Biotechnol ; 191(1): 226-244, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32125649

RESUMEN

This study aimed to evaluate the effect of probiotic administration on obese and ageing models. Sprague Dawley rats were subjected to high-fat diet (HFD) and injected with D-galactose to induce premature ageing. Upon 12 weeks of treatment, the faecal samples were collected and subjected to gas chromatography-mass spectrophotometry (GC-MS) analysis for metabolite detection. The sparse partial least squares discriminant analysis (sPLS-DA) showed a distinct clustering pattern of metabolite profile in the aged and obese rats administered with probiotics Lactobacillus plantarum DR7 and L. reuteri 8513d, particularly with a significantly higher concentration of allantoin. Molecular docking simulation showed that allantoin promoted the phosphorylation (activation) of adenosine monophosphate-activated kinase (AMPK) by lowering the substrate free energy of binding (FEB) and induced the formation of an additional hydrogen bond between Val184 and the substrate AMP. Allantoin also suppressed cholesterol biosynthesis by either inducing enzyme inhibition, occupying or blocking the putative binding site to result in non-spontaneous substrate binding, as in the cases of 3-hydroxy-methylglutaryl-coA reductase (HMGCR), mevalonate kinase (MVK) and lanosterol demethylase (LDM) where positive FEBs were reported. These results demonstrated the potential of allantoin to alleviate age-related hypercholesterolaemia by upregulating AMPK and downregulating cholesterol biosynthesis via the mevalonate pathway and Bloch pathway.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Alantoína/farmacología , Colesterol/biosíntesis , Lactobacillus plantarum , Limosilactobacillus reuteri , Ácido Mevalónico/metabolismo , Probióticos/farmacología , Animales , Masculino , Fosforilación/efectos de los fármacos , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA