Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Gut ; 68(3): 522-532, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30301768

RESUMEN

OBJECTIVE: Sustained inflammation originating from macrophages is a driving force of fibrosis progression and resolution. Monoacylglycerol lipase (MAGL) is the rate-limiting enzyme in the degradation of monoacylglycerols. It is a proinflammatory enzyme that metabolises 2-arachidonoylglycerol, an endocannabinoid receptor ligand, into arachidonic acid. Here, we investigated the impact of MAGL on inflammation and fibrosis during chronic liver injury. DESIGN: C57BL/6J mice and mice with global invalidation of MAGL (MAGL -/- ), or myeloid-specific deletion of either MAGL (MAGLMye-/-), ATG5 (ATGMye-/-) or CB2 (CB2Mye-/-), were used. Fibrosis was induced by repeated carbon tetrachloride (CCl4) injections or bile duct ligation (BDL). Studies were performed on peritoneal or bone marrow-derived macrophages and Kupffer cells. RESULTS: MAGL -/- or MAGLMye-/- mice exposed to CCl4 or subjected to BDL were more resistant to inflammation and fibrosis than wild-type counterparts. Therapeutic intervention with MJN110, an MAGL inhibitor, reduced hepatic macrophage number and inflammatory gene expression and slowed down fibrosis progression. MAGL inhibitors also accelerated fibrosis regression and increased Ly-6Clow macrophage number. Antifibrogenic effects exclusively relied on MAGL inhibition in macrophages, since MJN110 treatment of MAGLMye-/- BDL mice did not further decrease liver fibrosis. Cultured macrophages exposed to MJN110 or from MAGLMye-/- mice displayed reduced cytokine secretion. These effects were independent of the cannabinoid receptor 2, as they were preserved in CB2Mye-/- mice. They relied on macrophage autophagy, since anti-inflammatory and antifibrogenic effects of MJN110 were lost in ATG5Mye-/- BDL mice, and were associated with increased autophagic flux and autophagosome biosynthesis in macrophages when MAGL was pharmacologically or genetically inhibited. CONCLUSION: MAGL is an immunometabolic target in the liver. MAGL inhibitors may show promising antifibrogenic effects during chronic liver injury.


Asunto(s)
Antiinflamatorios/uso terapéutico , Cirrosis Hepática Experimental/tratamiento farmacológico , Hígado/enzimología , Monoacilglicerol Lipasas/antagonistas & inhibidores , Animales , Antiinflamatorios/farmacología , Autofagia/efectos de los fármacos , Carbamatos/farmacología , Carbamatos/uso terapéutico , Tetracloruro de Carbono , Recuento de Células , Células Cultivadas , Citocinas/metabolismo , Progresión de la Enfermedad , Evaluación Preclínica de Medicamentos/métodos , Hidrolasas/metabolismo , Mediadores de Inflamación/antagonistas & inhibidores , Mediadores de Inflamación/metabolismo , Cirrosis Hepática Experimental/inducido químicamente , Cirrosis Hepática Experimental/enzimología , Cirrosis Hepática Experimental/patología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/fisiología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Terapia Molecular Dirigida/métodos , Monoacilglicerol Lipasas/fisiología , Receptor Cannabinoide CB2/metabolismo , Succinimidas/farmacología , Succinimidas/uso terapéutico
2.
Gut Pathog ; 13(1): 5, 2021 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-33509285

RESUMEN

BACKGROUND: Intestinal fibrosis is a frequent complication of Crohn's disease. However, the factors that cause chronicity and promote fibrogenesis are not yet understood. AIMS: In the present study, we evaluated the profibrotic effects of adherent-invasive Escherichia coli (AIEC) LF82 strain and Candida albicans in the gut. METHODS: Colonic fibrosis was induced in C57BL/6 mice by administration of three cycles of 2.5% (w/v) dextran sulfate sodium (DSS) for 5 weeks. LF82 and C. albicans were administered orally once at the start of each week or each cycle, respectively. Expression of markers of myofibroblast activation was determined in TGF-ß1-stimulated human intestinal epithelial cells (IECs). RESULTS: LF82 administration exacerbated fibrosis in DSS-treated mice, revealed by increased colonic collagen deposition and expression of the profibrotic genes Col1a1, Col3a1, Fn1 and Vim. This was accompanied by enhanced gene expression of proinflammatory cytokines and chemokines, as well as more recruited inflammatory cells into the intestine. LF82 also potentiated TGF-ß1-stimulated epithelial-mesenchymal transition and myofibroblast activation in IECs, by further inducing gene expression of the main mesenchymal cell markers FN1 and VIM and downregulating the IEC marker OCLN. Proinflammatory cytokines were overexpressed with LF82 in TGF-ß1-stimulated IECs. Conversely, C. albicans did not affect intestinal fibrosis progression in DSS-treated mice or myofibroblast activation in TGF-ß1-stimulated IECs. CONCLUSIONS: These results demonstrate that AIEC strain LF82, but not C. albicans, may play a major profibrogenic role in the gut.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA