Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Immunol ; 188(1): 111-21, 2012 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-22140254

RESUMEN

Central tolerance toward tissue-restricted Ags is considered to rely on ectopic expression in the thymus, which was also observed for tumor Ags encoded by cancer-germline genes. It is unknown whether endogenous expression shapes the T cell repertoire against the latter Ags and explains their weak immunogenicity. We addressed this question using mouse cancer-germline gene P1A, which encodes antigenic peptide P1A(35-43) presented by H-2L(d). We made P1A-knockout (P1A-KO) mice and asked whether their anti-P1A(35-43) immune responses were stronger than those of wild-type mice and whether P1A-KO mice responded to other P1A epitopes, against which wild-type mice were tolerized. We observed that both types of mice mounted similar P1A(35-43)-specific CD8 T cell responses, although the frequency of P1A(35-43)-specific CD8 T cells generated in response to P1A-expressing tumors was slightly higher in P1A-KO mice. This higher reactivity allowed naive P1A-KO mice to reject spontaneously P1A-expressing tumors, which progressed in wild-type mice. TCR-Vß usage of P1A(35-43)-specific CD8 cells was slightly modified in P1A-KO mice. Peptide P1A(35-43) remained the only P1A epitope recognized by CD8 T cells in both types of mice, which also displayed similar thymic selection of a transgenic TCR recognizing P1A(35-43). These results indicate the existence of a minimal tolerance to an Ag encoded by a cancer-germline gene and suggest that its endogenous expression only slightly affects diversification of the T cell repertoire against this Ag.


Asunto(s)
Antígenos de Neoplasias/inmunología , Linfocitos T CD8-positivos/inmunología , Epítopos/inmunología , Tolerancia Inmunológica , Neoplasias/inmunología , Péptidos/inmunología , Animales , Antígenos de Neoplasias/genética , Línea Celular Tumoral , Epítopos/genética , Ratones , Ratones Noqueados , Neoplasias/genética , Péptidos/genética , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Receptores de Antígenos de Linfocitos T alfa-beta/inmunología
2.
Cancer Res ; 66(6): 3278-86, 2006 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-16540681

RESUMEN

Cancer immunotherapy based on vaccination with defined tumor antigens has not yet shown strong clinical efficacy, despite promising results in preclinical models. This discrepancy might result from the fact that available preclinical models rely on transplantable tumors, which do not recapitulate the long-term host-tumor interplay that occurs in patients during progressive tumor development and results in tumor tolerance. To create a faithful preclinical model for cancer immunotherapy, we generated a transgenic mouse strain developing autologous melanomas expressing a defined tumor antigen recognized by T cells. We chose the antigen encoded by P1A, a well-characterized murine cancer germ line gene. To transform melanocytes, we aimed at simultaneously activating the Ras pathway and inactivating tumor suppressor Ink4a/Arf, thereby reproducing two genetic events frequently observed in human melanoma. The melanomas are induced by s.c. injection of 4-OH-tamoxifen (OHT). By activating a CreER recombinase expressed from a melanocyte-specific promoter, this treatment induces the loss of the conditional Ink4a/Arf gene in melanocytes. Because the CreER gene itself is also flanked by loxP sites, the activation of CreER also induces the deletion of its own coding sequence and thereby allows melanocyte-specific expression of genes H-ras and P1A, which are located downstream on the same transgene. All melanomas induced in those mice with OHT show activation of the Ras pathway and deletion of gene Ink4a/Arf. In addition, these melanomas express P1A and are recognized by P1A-specific T lymphocytes. This model will allow to characterize the interactions between the immune system and naturally occurring tumors and thereby to optimize immunotherapy approaches targeting a defined tumor antigen.


Asunto(s)
Antígenos de Neoplasias/biosíntesis , Melanoma Experimental/inmunología , Animales , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/inmunología , Linfocitos T CD8-positivos/inmunología , Inhibidor p16 de la Quinasa Dependiente de Ciclina/antagonistas & inhibidores , Inhibidor p16 de la Quinasa Dependiente de Ciclina/biosíntesis , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Modelos Animales de Enfermedad , Melanoma Experimental/genética , Ratones , Ratones Transgénicos , Recombinación Genética , Tamoxifeno/análogos & derivados , Proteína p14ARF Supresora de Tumor/antagonistas & inhibidores , Proteína p14ARF Supresora de Tumor/biosíntesis , Proteína p14ARF Supresora de Tumor/genética , Proteínas ras/genética
3.
Vaccine ; 29(13): 2461-73, 2011 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-21256188

RESUMEN

AS03 is an Adjuvant System (AS) containing α-tocopherol and squalene in an oil-in-water (o/w) emulsion. AS03 has been considered for the development of pandemic and seasonal influenza vaccines. Key features of AS03's mode of action were investigated in vivo in mice and ex vivo in human cells. AS03's adjuvant activity was superior to that of aluminium hydroxide and required the spatio-temporal co-localisation of AS03 with the antigen. This requirement coincided with AS03 triggering a transient production of cytokines at the injection site and in the draining lymph nodes (dLNs). The nature of the cytokines produced was consistent with the enhanced recruitment of granulocytes and of antigen-loaded monocytes in the dLNs. The presence of α-tocopherol in AS03 was required for AS03 to achieve the highest antibody response. The presence of α-tocopherol also modulated the expression of some cytokines, including CCL2, CCL3, IL-6, CSF3 and CXCL1; increased the antigen loading in monocytes; and increased the recruitment of granulocytes in the dLNs. Hence, AS03's promotion of monocytes as the principal antigen-presenting cells, and its effects on granulocytes and cytokines, may all contribute to enhancing the antigen-specific adaptive immune response.


Asunto(s)
Inmunidad Adaptativa , Adyuvantes Inmunológicos/administración & dosificación , Inmunidad Innata , Vacunas contra la Influenza/inmunología , Polisorbatos/administración & dosificación , Escualeno/administración & dosificación , Tocoferoles/administración & dosificación , alfa-Tocoferol/administración & dosificación , Animales , Anticuerpos Antivirales/sangre , Línea Celular , Citocinas/metabolismo , Combinación de Medicamentos , Emulsiones/administración & dosificación , Femenino , Granulocitos/inmunología , Humanos , Vacunas contra la Influenza/administración & dosificación , Linfocitos/inmunología , Ratones , Ratones Endogámicos C57BL , Monocitos/inmunología , Músculos/inmunología
4.
Expert Rev Vaccines ; 6(5): 723-39, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17931153

RESUMEN

The need for potentiating immune responses to recombinant or subunit antigens has prompted GlaxoSmithKline (GSK) Biologicals to develop various Adjuvant Systems for the design of prophylactic and therapeutic vaccines. Adjuvant Systems are formulations of classical adjuvants mixed with immunomodulators, specifically adapted to the antigen and the target population. They can activate the appropriate innate immune system and subsequently impact on adaptive immune responses. AS04 is an Adjuvant System that has demonstrated significant achievements in several vaccines against viral diseases. AS02, another Adjuvant System, is being evaluated in various contexts, where a strong T-cell response is needed to afford protection. Likewise, AS01 has been developed for vaccines where the induction of a yet stronger T-cell-mediated immune response is required. Altogether, the promising clinical results strongly support the concept of Adjuvant Systems and allow for further development of new vaccines, best adapted to the target population and the immune mechanisms of protection.


Asunto(s)
Adyuvantes Inmunológicos/administración & dosificación , Adyuvantes Farmacéuticos/administración & dosificación , Industria Farmacéutica/tendencias , Lípido A/análogos & derivados , Saponinas/administración & dosificación , Vacunas/administración & dosificación , Hidróxido de Aluminio , Animales , Combinación de Medicamentos , Industria Farmacéutica/métodos , Humanos , Lípido A/administración & dosificación , Malaria/inmunología , Malaria/prevención & control , Vacunas/inmunología , Virosis/inmunología , Virosis/prevención & control
5.
Dev Dyn ; 230(2): 325-34, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15162511

RESUMEN

The MAGED gene subfamily contains three genes in mouse and four in human. The MAGED1, D2, and D3 proteins are highly conserved between mouse and human, whereas paralogues are less conserved between each other. This finding suggests that each MAGED protein exerts a distinct function. To get a better insight into their physiological roles, we have analyzed their expression patterns during embryogenesis and brain development. In the mouse, Maged3 expression is restricted to the central nervous system where it was mostly detected in postmitotic neurons. Maged2 is mainly expressed in tissues of mesodermal origin. The expression pattern of Maged1 roughly summarizes that of Maged2 and Maged3; however, contrary to that of Maged3, it includes the proliferative zones of the nervous system. We observed a discrepancy between Maged1 expression levels of RNA and protein, suggesting that its expression is regulated at a posttranscriptional level during the mouse development.


Asunto(s)
Antígenos de Superficie/genética , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Moléculas de Adhesión Celular/genética , Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas de Neoplasias/genética , Proteínas Adaptadoras Transductoras de Señales , Envejecimiento/genética , Animales , Animales Recién Nacidos , Antígenos de Neoplasias , Antígenos de Superficie/metabolismo , Encéfalo/citología , Encéfalo/embriología , Embrión de Mamíferos/citología , Embrión de Mamíferos/embriología , Embrión de Mamíferos/metabolismo , Femenino , Feto/metabolismo , Perfilación de la Expresión Génica , Humanos , Hibridación in Situ , Ratones , Ratones Endogámicos BALB C , Proteínas de Neoplasias/metabolismo , Embarazo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transcripción Genética
6.
J Immunol ; 172(8): 5069-77, 2004 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-15067090

RESUMEN

Selection of immature CD4CD8 double-positive (DP) thymocytes for CD4 or CD8-lineage commitment is controlled by the interaction of the TCR with stromal cell-expressed peptide/MHC. We show that thymocyte-intrinsic genes influence the pattern of expression of a MHC class I-restricted transgenic (tg) TCR so that in DBA/2 mice, DP thymocytes with a characteristically high expression of tg TCR, infrequently transit to CD8 single-positive thymocytes. In contrast, in B10.D2 mice, the same tg TCR is expressed at lower levels on a subpopulation of DP thymocytes that more frequently transit to CD8 single-positive thymocytes. These characteristics were not influenced by thymic stromal components that control positive selection. Radiation chimeras reconstituted with a mixture of BM from tg TCR mice of the two genetic backgrounds revealed that the relative frequency of transit to the CD8 lineage remained thymocyte-intrinsic. Identifying the gene products whose polymorphism controls CD8 T cell development may shed new light on the mechanisms controlling T cell commitment/selection in mice other than the most studied "C57BL/6"-based strains.


Asunto(s)
Antígenos de Neoplasias/fisiología , Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/inmunología , Regulación de la Expresión Génica/inmunología , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Timo/citología , Timo/inmunología , Animales , Antígenos de Neoplasias/biosíntesis , Antígenos de Neoplasias/genética , Trasplante de Médula Ósea/inmunología , Complejo CD3/biosíntesis , Linfocitos T CD8-positivos/metabolismo , Diferenciación Celular/genética , Diferenciación Celular/inmunología , Linaje de la Célula/genética , Linaje de la Célula/inmunología , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/inmunología , Células Madre Hematopoyéticas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Transgénicos , Especificidad de Órganos/genética , Especificidad de Órganos/inmunología , Quimera por Radiación/inmunología , Receptores de Antígenos de Linfocitos T/biosíntesis , Células del Estroma/citología , Células del Estroma/inmunología , Células del Estroma/metabolismo , Subgrupos de Linfocitos T/citología , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Timo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA