Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nature ; 525(7570): 533-7, 2015 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-26352475

RESUMEN

Somaclonal variation arises in plants and animals when differentiated somatic cells are induced into a pluripotent state, but the resulting clones differ from each other and from their parents. In agriculture, somaclonal variation has hindered the micropropagation of elite hybrids and genetically modified crops, but the mechanism responsible remains unknown. The oil palm fruit 'mantled' abnormality is a somaclonal variant arising from tissue culture that drastically reduces yield, and has largely halted efforts to clone elite hybrids for oil production. Widely regarded as an epigenetic phenomenon, 'mantling' has defied explanation, but here we identify the MANTLED locus using epigenome-wide association studies of the African oil palm Elaeis guineensis. DNA hypomethylation of a LINE retrotransposon related to rice Karma, in the intron of the homeotic gene DEFICIENS, is common to all mantled clones and is associated with alternative splicing and premature termination. Dense methylation near the Karma splice site (termed the Good Karma epiallele) predicts normal fruit set, whereas hypomethylation (the Bad Karma epiallele) predicts homeotic transformation, parthenocarpy and marked loss of yield. Loss of Karma methylation and of small RNA in tissue culture contributes to the origin of mantled, while restoration in spontaneous revertants accounts for non-Mendelian inheritance. The ability to predict and cull mantling at the plantlet stage will facilitate the introduction of higher performing clones and optimize environmentally sensitive land resources.


Asunto(s)
Arecaceae/genética , Metilación de ADN , Epigénesis Genética/genética , Epigenómica , Genoma de Planta/genética , Fenotipo , Retroelementos/genética , Alelos , Empalme Alternativo/genética , Arecaceae/metabolismo , Frutas/genética , Genes Homeobox/genética , Estudios de Asociación Genética , Intrones/genética , Datos de Secuencia Molecular , Aceite de Palma , Aceites de Plantas/análisis , Aceites de Plantas/metabolismo , Sitios de Empalme de ARN/genética , ARN Interferente Pequeño/genética
2.
Plant Cell Rep ; 40(7): 1141-1154, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33929599

RESUMEN

KEY MESSAGE: Potentially embryogenic oil palms can be identified through leaf transcriptomic signatures. Differential expression of genes involved in flowering time, and stress and light responses may associate with somatic embryogenesis potential. Clonal propagation is an attractive approach for the mass propagation of high yielding oil palms. A major issue hampering the effectiveness of oil palm tissue culture is the low somatic embryogenesis rate. Previous studies have identified numerous genes involved in oil palm somatic embryogenesis, but their association with embryogenic potential has not been determined. In this study, differential expression analysis of leaf transcriptomes from embryogenic and non-embryogenic mother palms revealed that transcriptome profiles from non- and poor embryogenic mother palms were more similar than highly embryogenic palms. A total of 171 genes exhibiting differential expression in non- and low embryogenesis groups could also discriminate high from poor embryogenesis groups of another tissue culture agency. Genes related to flowering time or transition such as FTIP, FRIGIDA-LIKE, and NF-YA were up-regulated in embryogenic ortets, suggesting that reproduction timing of the plant may associate with somatic embryogenesis potential. Several light response or photosynthesis-related genes were down-regulated in embryogenic ortets, suggesting a link between photosynthesis activity and embryogenic potential. As expression profiles of the differentially expressed genes are very similar between non- and low embryogenic groups, machine learning approaches with several candidate genes may generate a more sensitive model to better discriminate non-embryogenic from embryogenic ortets.


Asunto(s)
Arecaceae/genética , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta/genética , Técnicas de Embriogénesis Somática de Plantas/métodos , Semillas/genética , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Arecaceae/efectos de los fármacos , Arecaceae/metabolismo , Perfilación de la Expresión Génica , Proteínas de Plantas/genética , Estrés Fisiológico/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA