Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Indian J Hum Genet ; 20(1): 85-8, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24959022

RESUMEN

Rearrangements between homologous chromosomes are extremely rare and manifest mainly as monosomic or trisomic offsprings. There are remarkably few reports of balanced homologous chromosomal translocation t (22q; 22q) and only two cases of transmission of this balanced homohologous rearrangement from mother to normal daughter are reported. Robersonian translocation carriers in non-homologous chromosomes have the ability to have an unaffected child. However, it is not possible to have an unaffected child in cases with Robersonian translocations in homologous chromosomes. Carriers of homologous chromosome 22 translocations with maternal uniparental disomy do not have any impact on their phenotype. We are presenting a family with a history of multiple first trimester miscarriages and an unexpected inheritance of balanced homologous translocation of chromosome 22 with paternal uniparental disomy. There are no data available regarding the impact of paternal UPD 22 on the phenotype. We claim this to be the first report explaining that paternal UPD 22 does not impact the phenotype.

2.
Nat Commun ; 15(1): 5302, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38906890

RESUMEN

CETP inhibitors are a class of lipid-lowering drugs in development for treatment of coronary heart disease (CHD). Genetic studies in East Asian ancestry have interpreted the lack of CETP signal with low-density lipoprotein cholesterol (LDL-C) and lack of drug target Mendelian randomization (MR) effect on CHD as evidence that CETP inhibitors might not be effective in East Asian participants. Capitalizing on recent increases in sample size of East Asian genetic studies, we conducted a drug target MR analysis, scaled to a standard deviation increase in high-density lipoprotein cholesterol. Despite finding evidence for possible neutral effects of lower CETP levels on LDL-C, systolic blood pressure and pulse pressure in East Asians (interaction p-values < 1.6 × 10-3), effects on cardiovascular outcomes were similarly protective in both ancestry groups. In conclusion, on-target inhibition of CETP is anticipated to decrease cardiovascular disease in individuals of both European and East Asian ancestries.


Asunto(s)
Proteínas de Transferencia de Ésteres de Colesterol , LDL-Colesterol , Análisis de la Aleatorización Mendeliana , Femenino , Humanos , Masculino , Persona de Mediana Edad , Anticolesterolemiantes/uso terapéutico , Presión Sanguínea/genética , Presión Sanguínea/efectos de los fármacos , Enfermedades Cardiovasculares/genética , Proteínas de Transferencia de Ésteres de Colesterol/genética , HDL-Colesterol/sangre , LDL-Colesterol/sangre , Enfermedad Coronaria/genética , Enfermedad Coronaria/sangre , Pueblos del Este de Asia/genética , Polimorfismo de Nucleótido Simple , Población Blanca/genética
3.
medRxiv ; 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37645746

RESUMEN

The direct causes of neurodegeneration underlying Alzheimer's disease (AD) and many other dementias, are not known. Here we identify serum amyloid P component (SAP), a constitutive plasma protein normally excluded from the brain, as a potential drug target. After meta-analysis of three genome-wide association studies, comprising 44,288 participants, cis-Mendelian randomization showed that genes responsible for higher plasma SAP values are significantly associated with AD, Lewy body dementia and plasma tau concentration. These genetic findings are consistent with experimental evidence of SAP neurotoxicity and the strong, independent association of neocortex SAP content with dementia at death. Depletion of SAP from the blood and from the brain, as is provided by the safe, well tolerated, experimental drug, miridesap, may therefore contribute to treatment of neurodegeneration.

4.
Neurology ; 101(17): e1729-e1740, 2023 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-37657941

RESUMEN

BACKGROUND AND OBJECTIVES: There has been considerable interest in statins because of their pleiotropic effects beyond their lipid-lowering properties. Many of these pleiotropic effects are predominantly ascribed to Rho small guanosine triphosphatases (Rho GTPases) proteins. We aimed to genetically investigate the role of lipids and statin interventions on multiple sclerosis (MS) risk and severity. METHOD: We used two-sample Mendelian randomization (MR) to investigate (1) the causal role of genetically mimic both cholesterol-dependent (through low-density lipoprotein cholesterol (LDL-C) and cholesterol biosynthesis pathway) and cholesterol-independent (through Rho GTPases) effects of statins on MS risk and MS severity, (2) the causal link between lipids (high-density lipoprotein cholesterol [HDL-C] and triglycerides [TG]) levels and MS risk and severity, and (3) the reverse causation between lipid fractions and MS risk. We used summary statistics from the Global Lipids Genetics Consortium (GLGC), eQTLGen Consortium, and the International MS Genetics Consortium (IMSGC) for lipids, expression quantitative trait loci, and MS, respectively (GLGC: n = 188,577; eQTLGen: n = 31,684; IMSGC (MS risk): n = 41,505; IMSGC (MS severity): n = 7,069). RESULTS: The results of MR using the inverse-variance weighted method show that genetically predicted RAC2, a member of cholesterol-independent pathway (OR 0.86 [95% CI 0.78-0.95], p-value 3.80E-03), is implicated causally in reducing MS risk. We found no evidence for the causal role of LDL-C and the member of cholesterol biosynthesis pathway on MS risk. The MR results also show that lifelong higher HDL-C (OR 1.14 [95% CI 1.04-1.26], p-value 7.94E-03) increases MS risk but TG was not. Furthermore, we found no evidence for the causal role of lipids and genetically mimicked statins on MS severity. There is no evidence of reverse causation between MS risk and lipids. DISCUSSION: Evidence from this study suggests that RAC2 is a genetic modifier of MS risk. Because RAC2 has been reported to mediate some of the pleiotropic effects of statins, we suggest that statins may reduce MS risk through a cholesterol-independent pathway (that is, RAC2-related mechanism(s)). MR analyses also support a causal effect of HDL-C on MS risk.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas , Esclerosis Múltiple , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , LDL-Colesterol , Triglicéridos , Análisis de la Aleatorización Mendeliana , Esclerosis Múltiple/epidemiología , Esclerosis Múltiple/genética , Colesterol , HDL-Colesterol , Proteínas de Unión al GTP rho/genética , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple
5.
Sci Adv ; 9(17): eadd4984, 2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-37126556

RESUMEN

Dysfunction of either the right or left ventricle can lead to heart failure (HF) and subsequent morbidity and mortality. We performed a genome-wide association study (GWAS) of 16 cardiac magnetic resonance (CMR) imaging measurements of biventricular function and structure. Cis-Mendelian randomization (MR) was used to identify plasma proteins associating with CMR traits as well as with any of the following cardiac outcomes: HF, non-ischemic cardiomyopathy, dilated cardiomyopathy (DCM), atrial fibrillation, or coronary heart disease. In total, 33 plasma proteins were prioritized, including repurposing candidates for DCM and/or HF: IL18R (providing indirect evidence for IL18), I17RA, GPC5, LAMC2, PA2GA, CD33, and SLAF7. In addition, 13 of the 25 druggable proteins (52%; 95% confidence interval, 0.31 to 0.72) could be mapped to compounds with known oncological indications or side effects. These findings provide leads to facilitate drug development for cardiac disease and suggest that cardiotoxicities of several cancer treatments might represent mechanism-based adverse effects.


Asunto(s)
Fibrilación Atrial , Cardiomiopatía Dilatada , Insuficiencia Cardíaca , Neoplasias , Humanos , Cardiotoxicidad , Estudio de Asociación del Genoma Completo , Glipicanos
6.
Nat Genet ; 55(6): 964-972, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37248441

RESUMEN

Spontaneous coronary artery dissection (SCAD) is an understudied cause of myocardial infarction primarily affecting women. It is not known to what extent SCAD is genetically distinct from other cardiovascular diseases, including atherosclerotic coronary artery disease (CAD). Here we present a genome-wide association meta-analysis (1,917 cases and 9,292 controls) identifying 16 risk loci for SCAD. Integrative functional annotations prioritized genes that are likely to be regulated in vascular smooth muscle cells and artery fibroblasts and implicated in extracellular matrix biology. One locus containing the tissue factor gene F3, which is involved in blood coagulation cascade initiation, appears to be specific for SCAD risk. Several associated variants have diametrically opposite associations with CAD, suggesting that shared biological processes contribute to both diseases, but through different mechanisms. We also infer a causal role for high blood pressure in SCAD. Our findings provide novel pathophysiological insights involving arterial integrity and tissue-mediated coagulation in SCAD and set the stage for future specific therapeutics and preventions.


Asunto(s)
Enfermedad de la Arteria Coronaria , Infarto del Miocardio , Enfermedades Vasculares , Humanos , Femenino , Estudio de Asociación del Genoma Completo , Enfermedades Vasculares/genética , Enfermedad de la Arteria Coronaria/genética
7.
Nat Genet ; 55(10): 1651-1664, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37770635

RESUMEN

Coronary artery calcification (CAC), a measure of subclinical atherosclerosis, predicts future symptomatic coronary artery disease (CAD). Identifying genetic risk factors for CAC may point to new therapeutic avenues for prevention. Currently, there are only four known risk loci for CAC identified from genome-wide association studies (GWAS) in the general population. Here we conducted the largest multi-ancestry GWAS meta-analysis of CAC to date, which comprised 26,909 individuals of European ancestry and 8,867 individuals of African ancestry. We identified 11 independent risk loci, of which eight were new for CAC and five had not been reported for CAD. These new CAC loci are related to bone mineralization, phosphate catabolism and hormone metabolic pathways. Several new loci harbor candidate causal genes supported by multiple lines of functional evidence and are regulators of smooth muscle cell-mediated calcification ex vivo and in vitro. Together, these findings help refine the genetic architecture of CAC and extend our understanding of the biological and potential druggable pathways underlying CAC.


Asunto(s)
Aterosclerosis , Enfermedad de la Arteria Coronaria , Humanos , Aterosclerosis/genética , Población Negra/genética , Enfermedad de la Arteria Coronaria/genética , Estudio de Asociación del Genoma Completo , Factores de Riesgo , Pueblo Europeo/genética
8.
Nat Commun ; 12(1): 6120, 2021 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-34675202

RESUMEN

Drug target Mendelian randomization (MR) studies use DNA sequence variants in or near a gene encoding a drug target, that alter the target's expression or function, as a tool to anticipate the effect of drug action on the same target. Here we apply MR to prioritize drug targets for their causal relevance for coronary heart disease (CHD). The targets are further prioritized using independent replication, co-localization, protein expression profiles and data from the British National Formulary and clinicaltrials.gov. Out of the 341 drug targets identified through their association with blood lipids (HDL-C, LDL-C and triglycerides), we robustly prioritize 30 targets that might elicit beneficial effects in the prevention or treatment of CHD, including NPC1L1 and PCSK9, the targets of drugs used in CHD prevention. We discuss how this approach can be generalized to other targets, disease biomarkers and endpoints to help prioritize and validate targets during the drug development process.


Asunto(s)
Enfermedad Coronaria/tratamiento farmacológico , Enfermedad Coronaria/genética , Análisis de la Aleatorización Mendeliana , HDL-Colesterol/sangre , LDL-Colesterol/sangre , Enfermedad Coronaria/sangre , Humanos , Proteínas de Transporte de Membrana/genética , Proproteína Convertasa 9/genética , Triglicéridos/sangre
9.
Nat Genet ; 53(5): 630-637, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33958779

RESUMEN

The kidney is an organ of key relevance to blood pressure (BP) regulation, hypertension and antihypertensive treatment. However, genetically mediated renal mechanisms underlying susceptibility to hypertension remain poorly understood. We integrated genotype, gene expression, alternative splicing and DNA methylation profiles of up to 430 human kidneys to characterize the effects of BP index variants from genome-wide association studies (GWASs) on renal transcriptome and epigenome. We uncovered kidney targets for 479 (58.3%) BP-GWAS variants and paired 49 BP-GWAS kidney genes with 210 licensed drugs. Our colocalization and Mendelian randomization analyses identified 179 unique kidney genes with evidence of putatively causal effects on BP. Through Mendelian randomization, we also uncovered effects of BP on renal outcomes commonly affecting patients with hypertension. Collectively, our studies identified genetic variants, kidney genes, molecular mechanisms and biological pathways of key relevance to the genetic regulation of BP and inherited susceptibility to hypertension.


Asunto(s)
Predisposición Genética a la Enfermedad , Genómica , Hipertensión/genética , Riñón/patología , Empalme Alternativo/genética , Presión Sanguínea/genética , Metilación de ADN/genética , Variación Genética , Estudio de Asociación del Genoma Completo , Humanos , Análisis de la Aleatorización Mendeliana , Polimorfismo de Nucleótido Simple/genética , Sitios de Carácter Cuantitativo/genética
10.
Nat Commun ; 11(1): 3255, 2020 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-32591531

RESUMEN

Mendelian randomisation (MR) analysis is an important tool to elucidate the causal relevance of environmental and biological risk factors for disease. However, causal inference is undermined if genetic variants used to instrument a risk factor also influence alternative disease-pathways (horizontal pleiotropy). Here we report how the 'no horizontal pleiotropy assumption' is strengthened when proteins are the risk factors of interest. Proteins are typically the proximal effectors of biological processes encoded in the genome. Moreover, proteins are the targets of most medicines, so MR studies of drug targets are becoming a fundamental tool in drug development. To enable such studies, we introduce a mathematical framework that contrasts MR analysis of proteins with that of risk factors located more distally in the causal chain from gene to disease. We illustrate key model decisions and introduce an analytical framework for maximising power and evaluating the robustness of analyses.


Asunto(s)
Sistemas de Liberación de Medicamentos , Genes , Análisis de la Aleatorización Mendeliana , Intervalos de Confianza , Enfermedad Coronaria/genética , Genoma Humano , Humanos , Desequilibrio de Ligamiento/genética , Lípidos/química , Modelos Genéticos , Oportunidad Relativa , Fenómica , Polimorfismo de Nucleótido Simple/genética , Proteínas/genética , Sitios de Carácter Cuantitativo/genética , Reproducibilidad de los Resultados
11.
Sci Rep ; 9(1): 18911, 2019 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-31827124

RESUMEN

Lack of efficacy in the intended disease indication is the major cause of clinical phase drug development failure. Explanations could include the poor external validity of pre-clinical (cell, tissue, and animal) models of human disease and the high false discovery rate (FDR) in preclinical science. FDR is related to the proportion of true relationships available for discovery (γ), and the type 1 (false-positive) and type 2 (false negative) error rates of the experiments designed to uncover them. We estimated the FDR in preclinical science, its effect on drug development success rates, and improvements expected from use of human genomics rather than preclinical studies as the primary source of evidence for drug target identification. Calculations were based on a sample space defined by all human diseases - the 'disease-ome' - represented as columns; and all protein coding genes - 'the protein-coding genome'- represented as rows, producing a matrix of unique gene- (or protein-) disease pairings. We parameterised the space based on 10,000 diseases, 20,000 protein-coding genes, 100 causal genes per disease and 4000 genes encoding druggable targets, examining the effect of varying the parameters and a range of underlying assumptions, on the inferences drawn. We estimated γ, defined mathematical relationships between preclinical FDR and drug development success rates, and estimated improvements in success rates based on human genomics (rather than orthodox preclinical studies). Around one in every 200 protein-disease pairings was estimated to be causal (γ = 0.005) giving an FDR in preclinical research of 92.6%, which likely makes a major contribution to the reported drug development failure rate of 96%. Observed success rate was only slightly greater than expected for a random pick from the sample space. Values for γ back-calculated from reported preclinical and clinical drug development success rates were also close to the a priori estimates. Substituting genome wide (or druggable genome wide) association studies for preclinical studies as the major information source for drug target identification was estimated to reverse the probability of late stage failure because of the more stringent type 1 error rate employed and the ability to interrogate every potential druggable target in the same experiment. Genetic studies conducted at much larger scale, with greater resolution of disease end-points, e.g. by connecting genomics and electronic health record data within healthcare systems has the potential to produce radical improvement in drug development success rate.


Asunto(s)
Desarrollo de Medicamentos , Genómica , Estudio de Asociación del Genoma Completo , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA