Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Respir Res ; 24(1): 280, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37964270

RESUMEN

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a chronic fatal disease with limited therapeutic options. The infiltration of monocytes and fibroblasts into the injured lungs is implicated in IPF. Enolase-1 (ENO1) is a cytosolic glycolytic enzyme which could translocate onto the cell surface and act as a plasminogen receptor to facilitate cell migration via plasmin activation. Our proprietary ENO1 antibody, HL217, was screened for its specific binding to ENO1 and significant inhibition of cell migration and plasmin activation (patent: US9382331B2). METHODS: In this study, effects of HL217 were evaluated in vivo and in vitro for treating lung fibrosis. RESULTS: Elevated ENO1 expression was found in fibrotic lungs in human and in bleomycin-treated mice. In the mouse model, HL217 reduced bleomycin-induced lung fibrosis, inflammation, body weight loss, lung weight gain, TGF-ß upregulation in bronchial alveolar lavage fluid (BALF), and collagen deposition in lung. Moreover, HL217 reduced the migration of peripheral blood mononuclear cells (PBMC) and the recruitment of myeloid cells into the lungs. In vitro, HL217 significantly reduced cell-associated plasmin activation and cytokines secretion from primary human PBMC and endothelial cells. In primary human lung fibroblasts, HL217 also reduced cell migration and collagen secretion. CONCLUSIONS: These findings suggest multi-faceted roles of cell surface ENO1 and a potential therapeutic approach for pulmonary fibrosis.


Asunto(s)
Fibrosis Pulmonar Idiopática , Neumonía , Ratones , Humanos , Animales , Leucocitos Mononucleares/metabolismo , Anticuerpos Monoclonales/uso terapéutico , Células Endoteliales/metabolismo , Fibrinolisina/metabolismo , Fibrinolisina/farmacología , Fibrinolisina/uso terapéutico , Pulmón/metabolismo , Fibrosis , Fibrosis Pulmonar Idiopática/inducido químicamente , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Fibrosis Pulmonar Idiopática/metabolismo , Neumonía/metabolismo , Colágeno/metabolismo , Bleomicina/toxicidad , Fibroblastos/metabolismo , Fosfopiruvato Hidratasa/metabolismo , Fosfopiruvato Hidratasa/farmacología , Fosfopiruvato Hidratasa/uso terapéutico , Ratones Endogámicos C57BL
2.
Int J Mol Sci ; 23(4)2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-35216208

RESUMEN

Clinically, acute ischemic symptoms in the eyes are one of the main causes of vision loss, with the associated inflammatory response and oxidative stress being the key factors that cause injury. Nonarteritic anterior ischemic optic neuropathy (NAION) is the most common type of ischemic optic neuropathy (ION); however, there are still no effective or safe treatment options to date. In this study, we investigated the neuroprotective effects of n-butylidenephthalide (BP) treatment in an experimental NAION rodent model (rAION). BP (10 mg/kg) or PBS (control group) were administered on seven consecutive days in the rAION model. Rats were evaluated for visual function by flash visual evoked potentials (FVEPs) at 4 weeks after NAION induction. The retina and optic nerve were removed for histological examination after the rats were euthanized. The molecular machinery of BP treatment in the rAION model was analyzed using Western blotting. We discovered that BP effectively improves retinal ganglion cell survival rates by preventing apoptotic processes after AION induction and reducing the inflammatory response through which blood-borne macrophages infiltrate the optic nerve. In addition, BP significantly preserved the integrity of the myelin sheath in the rAION model, demonstrating that BP can prevent the development of demyelination. Our immunoblotting results revealed the molecular mechanism through which BP mitigates the neuroinflammatory response through inhibition of the NF-κB signaling pathway. Taken together, these results demonstrate that BP can be used as an exceptional neuroprotective agent for ischemic injury.


Asunto(s)
Isquemia/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Neuropatía Óptica Isquémica/tratamiento farmacológico , Anhídridos Ftálicos/farmacología , Células Ganglionares de la Retina/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Modelos Animales de Enfermedad , Potenciales Evocados Visuales/efectos de los fármacos , Inflamación/tratamiento farmacológico , Macrófagos/efectos de los fármacos , Masculino , Nervio Óptico/efectos de los fármacos , Ratas , Ratas Wistar , Retina/efectos de los fármacos
3.
Medicina (Kaunas) ; 58(8)2022 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-36013601

RESUMEN

Background and objective: Dry eye disease (DED) is a relatively common disorder associated with abnormal tear film and the ocular surface that causes ocular irritation, dryness, visual impairment, and damage to the cornea. DED is not a life-threatening disease but causes discomfort and multifactorial disorders in vision that affect daily life. It has been reported that all traditional medicinal plants exhibit anti-inflammatory effects on several diseases. We hypothesized that the decoction ameliorated ocular irritation and decreased cytokine expression in the cornea. This study aimed to investigate the molecular mechanisms of DED and discover a therapeutic strategy to reduce corneal inflammation. Material and Methods: We used a DED mouse model with extraorbital lacrimal gland (ELG) excision and treated the mice with a decoction of five traditional medicines: Lycium chinense, Cuscuta chinensis, Senna tora, Ophiopogon japonicus, and Dendrobium nobile for 3 months. The tear osmolarity and the ocular surface staining were evaluated as indicators of DED. Immunohistochemistry was used to detect the level of inflammation on the cornea. Results: After treatment with the decoction for three months, epithelial erosions and desquamation were reduced, the intact of corneal endothelium was maintained, and tear osmolarity was restored in the eyes. The IL-1ß-associated inflammatory response was reduced in the cornea in the DED model. Conclusions: These data suggested that a mixture of traditional medicines might be a novel therapy to treat DED.


Asunto(s)
Cuscuta , Dendrobium , Síndromes de Ojo Seco , Lycium , Ophiopogon , Animales , Córnea , Modelos Animales de Enfermedad , Síndromes de Ojo Seco/diagnóstico , Síndromes de Ojo Seco/tratamiento farmacológico , Síndromes de Ojo Seco/metabolismo , Inflamación/complicaciones , Ratones , Lágrimas/química
4.
BMJ Open ; 12(4): e054111, 2022 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-35396285

RESUMEN

OBJECTIVE: To investigate the prevalence, incidence and relating factors that are associated with hereditary retinal dystrophy (HRD) in Taiwan from 2000 to 2013. DESIGN, SETTING AND PARTICIPANTS: This is a nationwide, population-based, retrospective case-control study using National Health Insurance Database. Study groups are patients with HRD as case group; age-matched patients without any diagnosis of HRD as control group. We enrolled 2418 study subjects, of which 403 were HRD patients. Important relating factors such as hypertension, diabetes, coronary artery disease, autoimmune disease, cancer, liver cirrhosis, chronic kidney disease, stroke, hyperlipidaemia, asthma, depression and dementia are also included. EXPOSURE: Patients diagnosed with HRD were retrieved from National Health Insurance Database. MAIN OUTCOMES AND MEASURES: OR calculated between the relating factors and HRD for objects and stratified by age and sex group between 2000 and 2013. RESULTS: Four hundred and three patients were included in the study group and 2015 in the control group. The incidence of HRD was 3.29/100 000, and the prevalence of HRD was 40.5/100 000 persons. The tendency of study group to have more cataract, cystoid macula oedema (CME) as compared with the control group. Among the subgroup with comorbidities, the relating factors such as hypertension, diabetes and chronic kidney disease was significantly higher among HRD patients with age 55 and above. CONCLUSIONS: 74% of the diagnosed HRD are retinitis pigmentosa. Population-based data suggested an increased incidence of cataract in younger patients, whereas older HRD patients are more susceptible to develop CME. Further work is needed to elucidate the mechanism between these ophthalmological disorders and HRD.


Asunto(s)
Catarata , Diabetes Mellitus , Hipertensión , Edema Macular , Insuficiencia Renal Crónica , Distrofias Retinianas , Estudios de Casos y Controles , Catarata/epidemiología , Comorbilidad , Diabetes Mellitus/epidemiología , Humanos , Hipertensión/epidemiología , Incidencia , Edema Macular/epidemiología , Persona de Mediana Edad , Prevalencia , Insuficiencia Renal Crónica/epidemiología , Distrofias Retinianas/epidemiología , Estudios Retrospectivos , Factores de Riesgo , Taiwán/epidemiología
5.
Antioxidants (Basel) ; 10(9)2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34573098

RESUMEN

Nonarteritic anterior ischemic optic neuropathy (NAION) is one of the most common acute optic neuropathies that affect the over 55-year-old population. NAION causes the loss of visual function, and it has no safe and effective therapy. Bardoxolone methyl (methyl 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oate; CDDO-Me; RTA 402) is a semisynthetic triterpenoid with effects against antioxidative stress and inflammation in neurodegeneration and kidney disease that activates the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway. Moreover, RTA 402 is an FDA-approved compound for the treatment of solid tumors, lymphoid malignancies, melanoma, and chronic kidney disease. Omaveloxolone (RTA 408) is an activator of Nrf2 and an inhibitor of NFκB, possessing antioxidative and anti-inflammatory activities in mitochondrial bioenergetics. RTA 408 is also under clinical investigation for Friedreich ataxia (FA). In this study, a rodent anterior ischemic optic neuropathy (rAION) model induced by photothrombosis was used to examine the therapeutic effects of RTA 402 and RTA 408. Treatment with RTA402 results in antiapoptotic, antioxidative stress, anti-inflammatory, and myelin-preserving effects on retinal ganglion cell (RGC) survival and visual function via regulation of NQO1 and HO-1, reduced IL-6 and Iba1 expression in macrophages, and promoted microglial expression of TGF-ß and Ym1 + 2 in the retina and optic nerve. However, these effects were not observed after RTA 408 treatment. Our results provide explicit evidence that RTA 402 modulates the Nrf2 and NFκB signaling pathways to protect RGCs from apoptosis and maintain the visual function in an rAION model. These findings indicate that RTA 402 may a potential therapeutic agent for ischemic optic neuropathy.

6.
Antioxidants (Basel) ; 10(6)2021 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-34204966

RESUMEN

Nonarteritic anterior ischemic optic neuropathy (NAION) is the most common cause of acute vision loss in older people, and there is no effective therapy. The effect of the systemic or local application of steroids for NAION patients remains controversial. Oroxylin A (OA) (5,7-dihydroxy-6-methoxyflavone) is a bioactive flavonoid extracted from Scutellariae baicalensis Georgi. with various beneficial effects, including anti-inflammatory and neuroprotective effects. A previous study showed that OA promotes retinal ganglion cell (RGC) survival after optic nerve (ON) crush injury. The purpose of this research was to further explore the potential actions of OA in ischemic injury in an experimental anterior ischemic optic neuropathy (rAION) rat model induced by photothrombosis. Our results show that OA efficiently attenuated ischemic injury in rats by reducing optic disc edema, the apoptotic death of retinal ganglion cells, and the infiltration of inflammatory cells. Moreover, OA significantly ameliorated the pathologic changes of demyelination, modulated microglial polarization, and preserved visual function after rAION induction. OA activated nuclear factor E2 related factor (Nrf2) signaling and its downstream antioxidant enzymes NAD(P)H:quinone oxidoreductase (NQO-1) and heme oxygenase 1 (HO-1) in the retina. We demonstrated that OA activates Nrf2 signaling, protecting retinal ganglion cells from ischemic injury, in the rAION model and could potentially be used as a therapeutic approach in ischemic optic neuropathy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA