Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 182(1): 226-244.e17, 2020 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-32649875

RESUMEN

Lung cancer in East Asia is characterized by a high percentage of never-smokers, early onset and predominant EGFR mutations. To illuminate the molecular phenotype of this demographically distinct disease, we performed a deep comprehensive proteogenomic study on a prospectively collected cohort in Taiwan, representing early stage, predominantly female, non-smoking lung adenocarcinoma. Integrated genomic, proteomic, and phosphoproteomic analysis delineated the demographically distinct molecular attributes and hallmarks of tumor progression. Mutational signature analysis revealed age- and gender-related mutagenesis mechanisms, characterized by high prevalence of APOBEC mutational signature in younger females and over-representation of environmental carcinogen-like mutational signatures in older females. A proteomics-informed classification distinguished the clinical characteristics of early stage patients with EGFR mutations. Furthermore, integrated protein network analysis revealed the cellular remodeling underpinning clinical trajectories and nominated candidate biomarkers for patient stratification and therapeutic intervention. This multi-omic molecular architecture may help develop strategies for management of early stage never-smoker lung adenocarcinoma.


Asunto(s)
Progresión de la Enfermedad , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Proteogenómica , Fumar/genética , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Carcinógenos/toxicidad , Estudios de Cohortes , Citosina Desaminasa/metabolismo , Asia Oriental , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Genoma Humano , Humanos , Metaloproteinasas de la Matriz/metabolismo , Mutación/genética , Análisis de Componente Principal
2.
Immunity ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38788712

RESUMEN

Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) functions as a critical stress sentinel that coordinates cell survival, inflammation, and immunogenic cell death (ICD). Although the catalytic function of RIPK1 is required to trigger cell death, its non-catalytic scaffold function mediates strong pro-survival signaling. Accordingly, cancer cells can hijack RIPK1 to block necroptosis and evade immune detection. We generated a small-molecule proteolysis-targeting chimera (PROTAC) that selectively degraded human and murine RIPK1. PROTAC-mediated depletion of RIPK1 deregulated TNFR1 and TLR3/4 signaling hubs, accentuating the output of NF-κB, MAPK, and IFN signaling. Additionally, RIPK1 degradation simultaneously promoted RIPK3 activation and necroptosis induction. We further demonstrated that RIPK1 degradation enhanced the immunostimulatory effects of radio- and immunotherapy by sensitizing cancer cells to treatment-induced TNF and interferons. This promoted ICD, antitumor immunity, and durable treatment responses. Consequently, targeting RIPK1 by PROTACs emerges as a promising approach to overcome radio- or immunotherapy resistance and enhance anticancer therapies.

3.
Genes Dev ; 2022 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-35902118

RESUMEN

The PBRM1 subunit of the PBAF (SWI/SNF) chromatin remodeling complex is mutated in ∼40% of clear cell renal cancers. PBRM1 loss has been implicated in responses to immunotherapy in renal cancer, but the mechanism is unclear. DNA damage-induced inflammatory signaling is an important factor determining immunotherapy response. This response is kept in check by the G2/M checkpoint, which prevents progression through mitosis with unrepaired damage. We found that in the absence of PBRM1, p53-dependent p21 up-regulation is delayed after DNA damage, leading to defective transcriptional repression by the DREAM complex and premature entry into mitosis. Consequently, DNA damage-induced inflammatory signaling pathways are activated by cytosolic DNA. Notably, p53 is infrequently mutated in renal cancer, so PBRM1 mutational status is critical to G2/M checkpoint maintenance. Moreover, we found that the ability of PBRM1 deficiency to predict response to immunotherapy correlates with expression of the cytosolic DNA-sensing pathway in clinical samples. These findings have implications for therapeutic responses in renal cancer.

4.
Mol Cell Proteomics ; 23(1): 100702, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38122900

RESUMEN

Estrogen receptor α (ERα) drives the transcription of genes involved in breast cancer (BC) progression, relying on coregulatory protein recruitment for its transcriptional and biological activities. Mutation of ERα as well as aberrant recruitment of its regulatory proteins contribute to tumor adaptation and drug resistance. Therefore, understanding the dynamic changes in ERα protein interaction networks is crucial for elucidating drug resistance mechanisms in BC. Despite progress in studying ERα-associated proteins, capturing subcellular transient interactions remains challenging and, as a result, significant number of important interactions remain undiscovered. In this study, we employed biotinylation by antibody recognition (BAR), an innovative antibody-based proximity labeling (PL) approach, coupled with mass spectrometry to investigate the ERα proximal proteome and its changes associated with resistance to aromatase inhibition, a key therapy used in the treatment of ERα-positive BC. We show that BAR successfully detected most of the known ERα interactors and mainly identified nuclear proteins, using either an epitope tag or endogenous antibody to target ERα. We further describe the ERα proximal proteome rewiring associated with resistance applying BAR to a panel of isogenic cell lines modeling tumor adaptation in the clinic. Interestingly, we find that ERα associates with some of the canonical cofactors in resistant cells and several proximal proteome changes are due to increased expression of ERα. Resistant models also show decreased levels of estrogen-regulated genes. Sensitive and resistant cells harboring a mutation in the ERα (Y537C) revealed a similar proximal proteome. We provide an ERα proximal protein network covering several novel ERα-proximal partners. These include proteins involved in highly dynamic processes such as sumoylation and ubiquitination difficult to detect with traditional protein interaction approaches. Overall, we present BAR as an effective approach to investigate the ERα proximal proteome in a spatial context and demonstrate its application in different experimental conditions.


Asunto(s)
Neoplasias de la Mama , Receptor alfa de Estrógeno , Femenino , Humanos , Neoplasias de la Mama/genética , Línea Celular Tumoral , Resistencia a Antineoplásicos , Receptor alfa de Estrógeno/metabolismo , Regulación Neoplásica de la Expresión Génica , Proteoma/metabolismo , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Receptores de Estrógenos/uso terapéutico
5.
J Proteome Res ; 23(6): 2160-2168, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38767394

RESUMEN

Resistance is a major problem with effective cancer treatment and the stroma forms a significant portion of the tumor mass but traditional drug screens involve cancer cells alone. Cancer-associated fibroblasts (CAFs) are a major tumor stroma component and its secreted proteins may influence the function of cancer cells. The majority of secretome studies compare different cancer or CAF cell lines exclusively. Here, we present the direct characterization of the secreted protein profiles between CAFs and KRAS mutant-cancer cell lines from colorectal, lung, and pancreatic tissues using multiplexed mass spectrometry. 2573 secreted proteins were annotated, and differential analysis highlighted understudied CAF-enriched secreted proteins, including Wnt family member 5B (WNT5B), in addition to established CAF markers, such as collagens. The functional role of CAF secreted proteins was explored by assessing its effect on the response to 97 anticancer drugs since stromal cells may cause a differing cancer drug response, which may be missed on routine drug screening using cancer cells alone. CAF secreted proteins caused specific effects on each of the cancer cell lines, which highlights the complexity and challenges in cancer treatment and so the importance to consider stromal elements.


Asunto(s)
Fibroblastos Asociados al Cáncer , Secretoma , Humanos , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/efectos de los fármacos , Fibroblastos Asociados al Cáncer/patología , Línea Celular Tumoral , Secretoma/metabolismo , Antineoplásicos/farmacología , Resistencia a Antineoplásicos , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Espectrometría de Masas , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Proteómica/métodos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética
6.
Mol Microbiol ; 117(2): 480-492, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34897856

RESUMEN

The enteropathogenic Escherichia coli (EPEC) type III secretion system effector Tir, which mediates intimate bacterial attachment to epithelial cells, also triggers Ca2+ influx followed by LPS entry and caspase-4-dependent pyroptosis, which could be antagonized by the effector NleF. Here we reveal the mechanism by which EPEC induces Ca2+ influx. We show that in the intestinal epithelial cell line SNU-C5, Tir activates the mechano/osmosensitive cation channel TRPV2 which triggers extracellular Ca2+ influx. Tir-induced Ca2+ influx could be blocked by siRNA silencing of TRPV2, pre-treatment with the TRPV2 inhibitor SET2 or by growing cells in low osmolality medium. Pharmacological activation of TRPV2 in the absence of Tir failed to initiate caspase-4-dependent cell death, confirming the necessity of Tir. Consistent with the model implicating activation on translocation of TRPV2 from the ER to plasma membrane, inhibition of protein trafficking by either brefeldin A or the effector NleA prevented TRPV2 activation and cell death. While infection with EPECΔnleA triggered pyroptotic cell death, this could be prevented by NleF. Taken together this study shows that while integration of Tir into the plasma membrane activates TRPV2, EPEC uses NleA to inhibit TRPV2 trafficking and NleF to inhibit caspase-4 and pyroptosis.


Asunto(s)
Escherichia coli Enteropatógena , Proteínas de Escherichia coli , Escherichia coli Enteropatógena/genética , Proteínas de Escherichia coli/metabolismo , Transporte de Proteínas , Piroptosis , Sistemas de Secreción Tipo III/genética , Sistemas de Secreción Tipo III/metabolismo
7.
PLoS Biol ; 18(12): e3000986, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33378358

RESUMEN

Clustering of the enteropathogenic Escherichia coli (EPEC) type III secretion system (T3SS) effector translocated intimin receptor (Tir) by intimin leads to actin polymerisation and pyroptotic cell death in macrophages. The effect of Tir clustering on the viability of EPEC-infected intestinal epithelial cells (IECs) is unknown. We show that EPEC induces pyroptosis in IECs in a Tir-dependent but actin polymerisation-independent manner, which was enhanced by priming with interferon gamma (IFNγ). Mechanistically, Tir clustering triggers rapid Ca2+ influx, which induces lipopolysaccharide (LPS) internalisation, followed by activation of caspase-4 and pyroptosis. Knockdown of caspase-4 or gasdermin D (GSDMD), translocation of NleF, which blocks caspase-4 or chelation of extracellular Ca2+, inhibited EPEC-induced cell death. IEC lines with low endogenous abundance of GSDMD were resistant to Tir-induced cell death. Conversely, ATP-induced extracellular Ca2+ influx enhanced cell death, which confirmed the key regulatory role of Ca2+ in EPEC-induced pyroptosis. We reveal a novel mechanism through which infection with an extracellular pathogen leads to pyroptosis in IECs.


Asunto(s)
Calcio/metabolismo , Proteínas de Escherichia coli/metabolismo , Piroptosis/fisiología , Receptores de Superficie Celular/metabolismo , Actinas/metabolismo , Adhesinas Bacterianas/metabolismo , Adhesinas Bacterianas/fisiología , Análisis por Conglomerados , Escherichia coli Enteropatógena/metabolismo , Escherichia coli Enteropatógena/patogenicidad , Células Epiteliales/metabolismo , Infecciones por Escherichia coli/metabolismo , Proteínas de Escherichia coli/fisiología , Células HeLa , Humanos , Mucosa Intestinal/metabolismo , Intestinos/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de Unión a Fosfato/metabolismo , Transporte de Proteínas , Receptores de Superficie Celular/fisiología , Transducción de Señal/fisiología , Sistemas de Secreción Tipo III/metabolismo
8.
Nucleic Acids Res ; 49(D1): D916-D923, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33270111

RESUMEN

The GENCODE project annotates human and mouse genes and transcripts supported by experimental data with high accuracy, providing a foundational resource that supports genome biology and clinical genomics. GENCODE annotation processes make use of primary data and bioinformatic tools and analysis generated both within the consortium and externally to support the creation of transcript structures and the determination of their function. Here, we present improvements to our annotation infrastructure, bioinformatics tools, and analysis, and the advances they support in the annotation of the human and mouse genomes including: the completion of first pass manual annotation for the mouse reference genome; targeted improvements to the annotation of genes associated with SARS-CoV-2 infection; collaborative projects to achieve convergence across reference annotation databases for the annotation of human and mouse protein-coding genes; and the first GENCODE manually supervised automated annotation of lncRNAs. Our annotation is accessible via Ensembl, the UCSC Genome Browser and https://www.gencodegenes.org.


Asunto(s)
COVID-19/prevención & control , Biología Computacional/métodos , Bases de Datos Genéticas , Genómica/métodos , Anotación de Secuencia Molecular/métodos , SARS-CoV-2/genética , Animales , COVID-19/epidemiología , COVID-19/virología , Epidemias , Humanos , Internet , Ratones , Seudogenes/genética , ARN Largo no Codificante/genética , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiología , Transcripción Genética/genética
9.
J Proteome Res ; 21(8): 1842-1856, 2022 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-35848491

RESUMEN

Large scale proteomic profiling of cell lines can reveal molecular signatures attributed to variable genotypes or induced perturbations, enabling proteogenomic associations and elucidation of pharmacological mechanisms of action. Although isobaric labeling has increased the throughput of proteomic analysis, the commonly used sample preparation workflows often require time-consuming steps and costly consumables, limiting their suitability for large scale studies. Here, we present a simplified and cost-effective one-pot reaction workflow in a 96-well plate format (SimPLIT) that minimizes processing steps and demonstrates improved reproducibility compared to alternative approaches. The workflow is based on a sodium deoxycholate lysis buffer and a single detergent cleanup step after peptide labeling, followed by quick off-line fractionation and MS2 analysis. We showcase the applicability of the workflow in a panel of colorectal cancer cell lines and by performing target discovery for a set of molecular glue degraders in different cell lines, in a 96-sample assay. Using this workflow, we report frequently dysregulated proteins in colorectal cancer cells and uncover cell-dependent protein degradation profiles of seven cereblon E3 ligase modulators (CRL4CRBN). Overall, SimPLIT is a robust method that can be easily implemented in any proteomics laboratory for medium-to-large scale TMT-based studies for deep profiling of cell lines.


Asunto(s)
Neoplasias Colorrectales , Proteómica , Humanos , Proteoma/análisis , Proteómica/métodos , Reproducibilidad de los Resultados , Flujo de Trabajo
10.
Genome Res ; 29(12): 2073-2087, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31537640

RESUMEN

The most widely appreciated role of DNA is to encode protein, yet the exact portion of the human genome that is translated remains to be ascertained. We previously developed PhyloCSF, a widely used tool to identify evolutionary signatures of protein-coding regions using multispecies genome alignments. Here, we present the first whole-genome PhyloCSF prediction tracks for human, mouse, chicken, fly, worm, and mosquito. We develop a workflow that uses machine learning to predict novel conserved protein-coding regions and efficiently guide their manual curation. We analyze more than 1000 high-scoring human PhyloCSF regions and confidently add 144 conserved protein-coding genes to the GENCODE gene set, as well as additional coding regions within 236 previously annotated protein-coding genes, and 169 pseudogenes, most of them disabled after primates diverged. The majority of these represent new discoveries, including 70 previously undetected protein-coding genes. The novel coding genes are additionally supported by single-nucleotide variant evidence indicative of continued purifying selection in the human lineage, coding-exon splicing evidence from new GENCODE transcripts using next-generation transcriptomic data sets, and mass spectrometry evidence of translation for several new genes. Our discoveries required simultaneous comparative annotation of other vertebrate genomes, which we show is essential to remove spurious ORFs and to distinguish coding from pseudogene regions. Our new coding regions help elucidate disease-associated regions by revealing that 118 GWAS variants previously thought to be noncoding are in fact protein altering. Altogether, our PhyloCSF data sets and algorithms will help researchers seeking to interpret these genomes, while our new annotations present exciting loci for further experimental characterization.


Asunto(s)
Exones , Genoma Humano , Estudio de Asociación del Genoma Completo , Secuenciación de Nucleótidos de Alto Rendimiento , Sistemas de Lectura Abierta , Análisis de Secuencia de ADN , Animales , Humanos , Seudogenes
11.
Cell Microbiol ; 23(9): e13366, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34021690

RESUMEN

Many enteric pathogens employ a type III secretion system (T3SS) to translocate effector proteins directly into the host cell cytoplasm, where they subvert signalling pathways of the intestinal epithelium. Here, we report that the anti-apoptotic regulator HS1-associated protein X1 (HAX-1) is an interaction partner of the T3SS effectors EspO of enterohaemorrhagic Escherichia coli (EHEC) and Citrobacter rodentium, OspE of Shigella flexneri and Osp1STYM of Salmonella enterica serovar Typhimurium. EspO, OspE and Osp1STYM have previously been reported to interact with the focal adhesions protein integrin linked kinase (ILK). We found that EspO localizes both to the focal adhesions (ILK localisation) and mitochondria (HAX-1 localisation), and that increased expression of HAX-1 leads to enhanced mitochondrial localisation of EspO. Ectopic expression of EspO, OspE and Osp1STYM protects cells from apoptosis induced by staurosporine and tunicamycin. Depleting cells of HAX-1 indicates that the anti-apoptotic activity of EspO is HAX-1 dependent. Both HAX-1 and ILK were further confirmed as EspO1-interacting proteins during infection using T3SS-delivered EspO1. Using cell detachment as a proxy for cell death we confirmed that T3SS-delivered EspO1 could inhibit cell death induced during EPEC infection, to a similar extent as the anti-apoptotic effector NleH, or treatment with the pan caspase inhibitor z-VAD. In contrast, in cells lacking HAX-1, EspO1 was no longer able to protect against cell detachment, while NleH1 and z-VAD maintained their protective activity. Therefore, during both infection and ectopic expression EspO protects cells from cell death by interacting with HAX-1. These results suggest that despite the differences between EHEC, C. rodentium, Shigella and S. typhimurium infections, hijacking HAX-1 anti-apoptotic signalling is a common strategy to maintain the viability of infected cells. TAKE AWAY: EspO homologues are found in EHEC, Shigella, S. typhimurium and some EPEC. EspO homologues interact with HAX-1. EspO protects infected cells from apoptosis. EspO joins a growing list of T3SS effectors that manipulate cell death pathways.


Asunto(s)
Escherichia coli Enterohemorrágica , Escherichia coli Enteropatógena , Proteínas de Escherichia coli , Apoptosis , Citrobacter rodentium , Sistemas de Secreción Tipo III
12.
EMBO J ; 36(21): 3250-3267, 2017 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-29030485

RESUMEN

Toxoplasma gondii encodes three protein kinase A catalytic (PKAc1-3) and one regulatory (PKAr) subunits to integrate cAMP-dependent signals. Here, we show that inactive PKAc1 is maintained at the parasite pellicle by interacting with acylated PKAr. Either a conditional knockdown of PKAr or the overexpression of PKAc1 blocks parasite division. Conversely, down-regulation of PKAc1 or stabilisation of a dominant-negative PKAr isoform that does not bind cAMP triggers premature parasite egress from infected cells followed by serial invasion attempts leading to host cell lysis. This untimely egress depends on host cell acidification. A phosphoproteome analysis suggested the interplay between cAMP and cGMP signalling as PKAc1 inactivation changes the phosphorylation profile of a putative cGMP-phosphodiesterase. Concordantly, inhibition of the cGMP-dependent protein kinase G (PKG) blocks egress induced by PKAc1 inactivation or environmental acidification, while a cGMP-phosphodiesterase inhibitor circumvents egress repression by PKAc1 or pH neutralisation. This indicates that pH and PKAc1 act as balancing regulators of cGMP metabolism to control egress. These results reveal a crosstalk between PKA and PKG pathways to govern egress in T. gondii.


Asunto(s)
3',5'-GMP Cíclico Fosfodiesterasas/genética , Subunidades Catalíticas de Proteína Quinasa Dependientes de AMP Cíclico/genética , Subunidad RIalfa de la Proteína Quinasa Dependiente de AMP Cíclico/genética , Proteínas Quinasas Dependientes de GMP Cíclico/genética , Interacciones Huésped-Parásitos , Proteínas Protozoarias/genética , Toxoplasma/genética , 3',5'-GMP Cíclico Fosfodiesterasas/metabolismo , Acilación , Línea Celular Transformada , AMP Cíclico/metabolismo , Subunidades Catalíticas de Proteína Quinasa Dependientes de AMP Cíclico/metabolismo , Subunidad RIalfa de la Proteína Quinasa Dependiente de AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Fibroblastos/parasitología , Regulación de la Expresión Génica , Humanos , Concentración de Iones de Hidrógeno , Estadios del Ciclo de Vida/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilación , Proteínas Protozoarias/metabolismo , Transducción de Señal , Toxoplasma/crecimiento & desarrollo , Toxoplasma/metabolismo
13.
Biol Proced Online ; 23(1): 5, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33526007

RESUMEN

COVID-19, a pandemic of the 21st century caused by novel coronavirus SARS-CoV-2 was originated from China and shallowed world economy and human resource. The medical cures via herbal treatments, antiviral drugs, and vaccines still in progress, and studying rigorously. SARS-CoV-2 is more virulent than its ancestors due to evolution in the spike protein(s), mediates viral attachment to the host's membranes. The SARS-CoV-2 receptor-binding spike domain associates itself with human angiotensin-converting enzyme 2 (ACE-2) receptors. It causes respiratory ailments with irregularities in the hepatic, nervous, and gastrointestinal systems, as reported in humans suffering from COVID-19 and reviewed in the present article. There are several approaches, have been put forward by many countries under the world health organization (WHO) recommendations and some trial drugs were introduced for possible treatment of COVID-19, such as Lopinavir or Ritonavir, Arbidol, Chloroquine (CQ), Hydroxychloroquine (HCQ) and most important Remdesivir including other like Tocilizumab, Oritavancin, Chlorpromazine, Azithromycin, Baricitinib, etc. RT-PCR is the only and early detection test available besides the rapid test kit (serodiagnosis) used by a few countries due to unreasonable causes. Development of vaccine by several leader of pharmaceutical groups still under trial or waiting for approval for mass inoculation. Management strategies have been evolved by the recommendations of WHO, specifically important to control COVID-19 situations, in the pandemic era. This review will provide a comprehensive collection of studies to support future research and enhancement in our wisdom to combat COVID-19 pandemic and to serve humanity.

14.
Cell Microbiol ; 22(1): e13126, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31610608

RESUMEN

The mouse pathogen Citrobacter rodentium is used to model infections with enterohaemorrhagic and enteropathogenic Escherichia coli (EHEC and EPEC). Pathogenesis is commonly modelled in mice developing mild disease (e.g., C57BL/6). However, little is known about host responses in mice exhibiting severe colitis (e.g., C3H/HeN), which arguably provide a more clinically relevant model for human paediatric enteric infection. Infection of C3H/HeN mice with C. rodentium results in rapid colonic colonisation, coinciding with induction of key inflammatory signatures and colonic crypt hyperplasia. Infection also induces dramatic changes to bioenergetics in intestinal epithelial cells, with transition from oxidative phosphorylation (OXPHOS) to aerobic glycolysis and higher abundance of SGLT4, LDHA, and MCT4. Concomitantly, mitochondrial proteins involved in the TCA cycle and OXPHOS were in lower abundance. Similar to observations in C57BL/6 mice, we detected simultaneous activation of cholesterol biogenesis, import, and efflux. Distinctly, however, the pattern recognition receptors NLRP3 and ALPK1 were specifically induced in C3H/HeN. Using cell-based assays revealed that C. rodentium activates the ALPK1/TIFA axis, which is dependent on the ADP-heptose biosynthesis pathway but independent of the Type III secretion system. This study reveals for the first time the unfolding intestinal epithelial cells' responses during severe infectious colitis, which resemble EPEC human infections.


Asunto(s)
Citrobacter rodentium/inmunología , Infecciones por Enterobacteriaceae/inmunología , Interacciones Microbiota-Huesped , Inflamación/microbiología , Mucosa Intestinal/microbiología , Animales , Citrobacter rodentium/patogenicidad , Colitis/inmunología , Colitis/microbiología , Infecciones por Enterobacteriaceae/metabolismo , Femenino , Microbioma Gastrointestinal , Células HeLa , Humanos , Mucosa Intestinal/inmunología , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Proteómica , Organismos Libres de Patógenos Específicos
15.
Nucleic Acids Res ; 47(D1): D766-D773, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30357393

RESUMEN

The accurate identification and description of the genes in the human and mouse genomes is a fundamental requirement for high quality analysis of data informing both genome biology and clinical genomics. Over the last 15 years, the GENCODE consortium has been producing reference quality gene annotations to provide this foundational resource. The GENCODE consortium includes both experimental and computational biology groups who work together to improve and extend the GENCODE gene annotation. Specifically, we generate primary data, create bioinformatics tools and provide analysis to support the work of expert manual gene annotators and automated gene annotation pipelines. In addition, manual and computational annotation workflows use any and all publicly available data and analysis, along with the research literature to identify and characterise gene loci to the highest standard. GENCODE gene annotations are accessible via the Ensembl and UCSC Genome Browsers, the Ensembl FTP site, Ensembl Biomart, Ensembl Perl and REST APIs as well as https://www.gencodegenes.org.


Asunto(s)
Bases de Datos Genéticas , Genoma Humano/genética , Genómica , Seudogenes/genética , Animales , Biología Computacional , Humanos , Internet , Ratones , Anotación de Secuencia Molecular , Programas Informáticos
16.
Proteomics ; 20(21-22): e2000009, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32937025

RESUMEN

Mass spectrometry (MS)-based quantitative proteomics experiments typically assay a subset of up to 60% of the ≈20 000 human protein coding genes. Computational methods for imputing the missing values using RNA expression data usually allow only for imputations of proteins measured in at least some of the samples. In silico methods for comprehensively estimating abundances across all proteins are still missing. Here, a novel method is proposed using deep learning to extrapolate the observed protein expression values in label-free MS experiments to all proteins, leveraging gene functional annotations and RNA measurements as key predictive attributes. This method is tested on four datasets, including human cell lines and human and mouse tissues. This method predicts the protein expression values with average R2 scores between 0.46 and 0.54, which is significantly better than predictions based on correlations using the RNA expression data alone. Moreover, it is demonstrated that the derived models can be "transferred" across experiments and species. For instance, the model derived from human tissues gave a R2=0.51 when applied to mouse tissue data. It is concluded that protein abundances generated in label-free MS experiments can be computationally predicted using functional annotated attributes and can be used to highlight aberrant protein abundance values.


Asunto(s)
Aprendizaje Profundo , Animales , Espectrometría de Masas , Ratones , Anotación de Secuencia Molecular , Proteínas , Proteómica
17.
Mol Microbiol ; 112(6): 1831-1846, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31556164

RESUMEN

The discovery of a Salmonella-targeting phage from the waterways of the United Kingdom provided an opportunity to address the mechanism by which Chi-like bacteriophage (phage) engages with bacterial flagellae. The long tail fibre seen on Chi-like phages has been proposed to assist the phage particle in docking to a host cell flagellum, but the identity of the protein that generates this fibre was unknown. We present the results from genome sequencing of this phage, YSD1, confirming its close relationship to the original Chi phage and suggesting candidate proteins to form the tail structure. Immunogold labelling in electron micrographs revealed that YSD1_22 forms the main shaft of the tail tube, while YSD1_25 forms the distal part contributing to the tail spike complex. The long curling tail fibre is formed by the protein YSD1_29, and treatment of phage with the antibodies that bind YSD1_29 inhibits phage infection of Salmonella. The host range for YSD1 across Salmonella serovars is broad, but not comprehensive, being limited by antigenic features of the flagellin subunits that make up the Salmonella flagellum, with which YSD1_29 engages to initiate infection.


Asunto(s)
Flagelos/genética , Fagos de Salmonella/genética , Fagos de Salmonella/aislamiento & purificación , Bacteriófagos/genética , ADN Viral/genética , Flagelos/metabolismo , Flagelos/fisiología , Genoma Viral/genética , Especificidad del Huésped , Filogenia , Fagos de Salmonella/metabolismo , Salmonella typhi/genética , Salmonella typhi/metabolismo , Análisis de Secuencia de ADN/métodos , Reino Unido
18.
Eur J Neurosci ; 51(3): 793-805, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31621109

RESUMEN

In recent years, the remarkable molecular complexity of synapses has been revealed, with over 1,000 proteins identified in the synapse proteome. Although it is known that different receptors and other synaptic proteins are present in different types of neurons, the extent of synapse diversity across the brain is largely unknown. This is mainly due to the limitations of current techniques. Here, we report an efficient method for the purification of synaptic protein complexes, fusing a high-affinity tag to endogenous PSD95 in specific cell types. We also developed a strategy, which enables the visualisation of endogenous PSD95 with fluorescent-protein tag in Cre-recombinase-expressing cells. We demonstrate the feasibility of proteomic analysis of synaptic protein complexes and visualisation of these in specific cell types. We find that the composition of PSD95 complexes purified from specific cell types differs from those extracted from tissues with diverse cellular composition. The results suggest that there might be differential interactions in the PSD95 complexes in different brain regions. We have detected differentially interacting proteins by comparing data sets from the whole hippocampus and the CA3 subfield of the hippocampus. Therefore, these novel conditional PSD95 tagging lines will not only serve as powerful tools for precisely dissecting synapse diversity in specific brain regions and subsets of neuronal cells, but also provide an opportunity to better understand brain region- and cell-type-specific alterations associated with various psychiatric/neurological diseases. These newly developed conditional gene tagging methods can be applied to many different synaptic proteins and will facilitate research on the molecular complexity of synapses.


Asunto(s)
Proteómica , Sinapsis , Animales , Homólogo 4 de la Proteína Discs Large/metabolismo , Hipocampo/metabolismo , Ratones , Neuronas/metabolismo , Proteoma/metabolismo , Sinapsis/metabolismo
19.
PLoS Pathog ; 14(10): e1007406, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30365535

RESUMEN

Infection with Citrobacter rodentium triggers robust tissue damage repair responses, manifested by secretion of IL-22, in the absence of which mice succumbed to the infection. Of the main hallmarks of C. rodentium infection are colonic crypt hyperplasia (CCH) and dysbiosis. In order to colonize the host and compete with the gut microbiota, C. rodentium employs a type III secretion system (T3SS) that injects effectors into colonic intestinal epithelial cells (IECs). Once injected, the effectors subvert processes involved in innate immune responses, cellular metabolism and oxygenation of the mucosa. Importantly, the identity of the effector/s triggering the tissue repair response is/are unknown. Here we report that the effector EspO ,an orthologue of OspE found in Shigella spp, affects proliferation of IECs 8 and 14 days post C. rodentium infection as well as secretion of IL-22 from colonic explants. While we observed no differences in the recruitment of group 3 innate lymphoid cells (ILC3s) and T cells, which are the main sources of IL-22 at the early and late stages of C. rodentium infection respectively, infection with ΔespO was characterized by diminished recruitment of sub-mucosal neutrophils, which coincided with lower abundance of Mmp9 and chemokines (e.g. S100a8/9) in IECs. Moreover, mice infected with ΔespO triggered significantly lesser nutritional immunity (e.g. calprotectin, Lcn2) and expression of antimicrobial peptides (Reg3ß, Reg3γ) compared to mice infected with WT C. rodentium. This overlapped with a decrease in STAT3 phosphorylation in IECs. Importantly, while the reduced CCH and abundance of antimicrobial proteins during ΔespO infection did not affect C. rodentium colonization or the composition of commensal Proteobacteria, they had a subtle consequence on Firmicutes subpopulations. EspO is the first bacterial virulence factor that affects neutrophil recruitment and secretion of IL-22, as well as expression of antimicrobial and nutritional immunity proteins in IECs.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/metabolismo , Citrobacter rodentium/metabolismo , Infecciones por Enterobacteriaceae/inmunología , Inmunidad Innata/inmunología , Mucosa Intestinal/inmunología , Sistemas de Secreción Tipo III/metabolismo , Animales , Infecciones por Enterobacteriaceae/metabolismo , Infecciones por Enterobacteriaceae/microbiología , Femenino , Mucosa Intestinal/lesiones , Mucosa Intestinal/microbiología , Ratones , Ratones Endogámicos C57BL
20.
Blood ; 131(9): 1000-1011, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29187380

RESUMEN

Mutations in NBEAL2, the gene encoding the scaffolding protein Nbeal2, are causal of gray platelet syndrome (GPS), a rare recessive bleeding disorder characterized by platelets lacking α-granules and progressive marrow fibrosis. We present here the interactome of Nbeal2 with additional validation by reverse immunoprecipitation of Dock7, Sec16a, and Vac14 as interactors of Nbeal2. We show that GPS-causing mutations in its BEACH domain have profound and possible effects on the interaction with Dock7 and Vac14, respectively. Proximity ligation assays show that these 2 proteins are physically proximal to Nbeal2 in human megakaryocytes. In addition, we demonstrate that Nbeal2 is primarily localized in the cytoplasm and Dock7 on the membrane of or in α-granules. Interestingly, platelets from GPS cases and Nbeal2-/- mice are almost devoid of Dock7, resulting in a profound dysregulation of its signaling pathway, leading to defective actin polymerization, platelet activation, and shape change. This study shows for the first time proteins interacting with Nbeal2 and points to the dysregulation of the canonical signaling pathway of Dock7 as a possible cause of the aberrant formation of platelets in GPS cases and Nbeal2-deficient mice.


Asunto(s)
Plaquetas/metabolismo , Proteínas Sanguíneas/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Megacariocitos/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animales , Plaquetas/citología , Proteínas Sanguíneas/genética , Proteínas Activadoras de GTPasa/genética , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Megacariocitos/citología , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Mutación , Unión Proteica , Proteínas de Transporte Vesicular/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA