Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34475212

RESUMEN

Toll-like receptor 4 (Tlr) interactor with leucine-rich repeats (Tril) functions as a Tlr coreceptor to mediate innate immunity in adults. In Xenopus embryos, Tril triggers degradation of the transforming growth factor ß (Tgf-ß) family inhibitor, Smad7. This enhances bone morphogenetic protein (Bmp) signaling to enable ventral mesoderm to commit to a blood fate. Here, we show that Tril simultaneously dampens Nodal signaling by catalytically activating the ubiquitin ligase NEDD4 Like (Nedd4l). Nedd4l then targets Nodal receptors for degradation. How Tril signals are transduced in a nonimmune context is unknown. We identify the ubiquitin ligase Pellino2 as a protein that binds to the cytoplasmic tail of Tril and subsequently forms a complex with Nedd4l and another E3 ligase, TNF-receptor associated factor 6 (Traf6). Pellino2 and Traf6 are essential for catalytic activation of Nedd4l, both in Xenopus and in mammalian cells. Traf6 ubiquitinates Nedd4l, which is then recruited to membrane compartments where activation occurs. Collectively, our findings reveal that Tril initiates a noncanonical Tlr-like signaling cascade to activate Nedd4l, thereby coordinately regulating the Bmp and Nodal arms of the Tgf-ß superfamily during vertebrate development.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/fisiología , Ubiquitina-Proteína Ligasas Nedd4/metabolismo , Proteína Nodal/metabolismo , Proteínas Nucleares/metabolismo , Transducción de Señal/fisiología , Animales , Desarrollo Embrionario , Células HEK293 , Células HeLa , Humanos , Ubiquitina-Proteína Ligasas Nedd4/genética , Fosforilación , Xenopus
2.
Dev Dyn ; 252(6): 761-769, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36825302

RESUMEN

BACKGROUND: The Bone morphogenetic protein 4 (BMP4) precursor protein is cleaved at two sites to generate an active ligand and inactive prodomain. The ligand and prodomain form a noncovalent complex following the first cleavage, but dissociate after the second cleavage. Transient formation of this complex is essential to generate a stable ligand. Fibrillins (FBNs) bind to the prodomains of BMPs, and can regulate the activity of some ligands. Whether FBNs regulate BMP4 activity is unknown. RESULTS: Mice heterozygous for a null allele of Bmp4 showed incompletely penetrant kidney defects and females showed increased mortality between postnatal day 6 and 8. Removal of one copy of Fbn1 did not rescue or enhance kidney defects or lethality. The lungs of Fbn1+/- females had enlarged airspaces that were unchanged in Bmp4+/- ;Fbn1+/- mice. Additionally, removal of one or both alleles of Fbn1 had no effect on steady state levels of BMP4 ligand or on BMP activity in postnatal lungs. CONCLUSIONS: These findings do not support the hypothesis that FBN1 plays a role in promoting BMP4 ligand stability or signaling, nor do they support the alternative hypothesis that FBN1 sequesters BMP4 in a latent form, as is the case for other BMP family members.


Asunto(s)
Proteínas Morfogenéticas Óseas , Riñón , Femenino , Ratones , Animales , Proteína Morfogenética Ósea 4/genética , Proteína Morfogenética Ósea 4/metabolismo , Ligandos , Proteínas Morfogenéticas Óseas/metabolismo , Alelos , Riñón/metabolismo , Proteína Morfogenética Ósea 7 , Proteína Morfogenética Ósea 2
3.
Development ; 144(24): 4476-4480, 2017 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-29254990

RESUMEN

The 10th FASEB meeting 'The TGFß Superfamily: Signaling in Development and Disease' took place in Lisbon, Portugal, in July 2017. As we review here, the findings presented at the meeting highlighted the important contributions of TGFß family signaling to normal development, adult homeostasis and disease, and also revealed novel mechanisms by which TGFß signals are transduced.


Asunto(s)
Transformación Celular Neoplásica/patología , Neoplasias/patología , Factor de Crecimiento Transformador beta/metabolismo , Animales , Humanos , Transducción de Señal
4.
Development ; 143(21): 4016-4026, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27633996

RESUMEN

In Xenopus laevis, bone morphogenetic proteins (Bmps) induce expression of the transcription factor Gata2 during gastrulation, and Gata2 is required in both ectodermal and mesodermal cells to enable mesoderm to commit to a hematopoietic fate. Here, we identify tril as a Gata2 target gene that is required in both ectoderm and mesoderm for primitive hematopoiesis to occur. Tril is a transmembrane protein that functions as a co-receptor for Toll-like receptors to mediate innate immune responses in the adult brain, but developmental roles for this molecule have not been identified. We show that Tril function is required both upstream and downstream of Bmp receptor-mediated Smad1 phosphorylation for induction of Bmp target genes. Mechanistically, Tril triggers degradation of the Bmp inhibitor Smad7. Tril-dependent downregulation of Smad7 relieves repression of endogenous Bmp signaling during gastrulation and this enables mesodermal progenitors to commit to a blood fate. Thus, Tril is a novel component of a Bmp-Gata2 positive-feedback loop that plays an essential role in hematopoietic specification.


Asunto(s)
Hematopoyesis , Péptidos y Proteínas de Señalización Intracelular/fisiología , Proteolisis , Proteína smad7/metabolismo , Proteínas de Xenopus/fisiología , Xenopus laevis/embriología , Animales , Diferenciación Celular , Embrión no Mamífero , Desarrollo Embrionario/fisiología , Regulación del Desarrollo de la Expresión Génica , Hematopoyesis/genética , Proteínas de la Membrana , Xenopus laevis/genética , Xenopus laevis/metabolismo
5.
Proc Natl Acad Sci U S A ; 112(18): E2307-16, 2015 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-25902523

RESUMEN

Bone morphogenetic proteins 4 and 7 (BMP4 and BMP7) are morphogens that signal as either homodimers or heterodimers to regulate embryonic development and adult homeostasis. BMP4/7 heterodimers exhibit markedly higher signaling activity than either homodimer, but the mechanism underlying the enhanced activity is unknown. BMPs are synthesized as inactive precursors that dimerize and are then cleaved to generate both the bioactive ligand and prodomain fragments, which lack signaling activity. Our study reveals a previously unknown requirement for the BMP4 prodomain in promoting heterodimer activity. We show that BMP4 and BMP7 precursor proteins preferentially or exclusively form heterodimers when coexpressed in vivo. In addition, we show that the BMP4 prodomain is both necessary and sufficient for generation of stable heterodimeric ligands with enhanced activity and can enable homodimers to signal in a context in which they normally lack activity. Our results suggest that intrinsic properties of the BMP4 prodomain contribute to the relative bioactivities of homodimers versus heterodimers in vivo. These findings have clinical implications for the use of BMPs as regenerative agents for the treatment of bone injury and disease.


Asunto(s)
Proteína Morfogenética Ósea 4/química , Proteína Morfogenética Ósea 7/química , Animales , Epítopos/química , Regulación del Desarrollo de la Expresión Génica , Células HEK293 , Humanos , Ligandos , Ratones , Unión Proteica , Multimerización de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Transducción de Señal , Xenopus
7.
Development ; 141(15): 3062-71, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24993941

RESUMEN

ProBMP4 is generated as a latent precursor that is sequentially cleaved at two sites within the prodomain to generate an active ligand. An initial cleavage occurs adjacent to the ligand domain, which generates a non-covalently associated prodomain/ligand complex that is subsequently dissociated by cleavage at an upstream site. An outstanding question is whether the two sites need to be cleaved sequentially and in the correct order to achieve proper control of BMP4 signaling during development. In the current studies, we demonstrate that mice carrying a knock-in point mutation that causes simultaneous rather than sequential cleavage of both prodomain sites show loss of BMP4 function and die during mid-embryogenesis. Levels of mature BMP4 are severely reduced in mutants, although levels of precursor and cleaved prodomain are unchanged compared with wild type. Our biochemical analysis supports a model in which the transient prodomain/ligand complex that forms during sequential cleavage plays an essential role in prodomain-mediated stabilization of the mature ligand until it can acquire protection from degradation by other means. By contrast, simultaneous cleavage causes premature release of the ligand from the prodomain, leading to destabilization of the ligand and loss of signaling in vivo.


Asunto(s)
Proteína Morfogenética Ósea 4/química , Proteínas de Xenopus/química , Alelos , Secuencias de Aminoácidos , Animales , Sitios de Unión , Tipificación del Cuerpo , Cruzamientos Genéticos , Células HEK293 , Humanos , Ligandos , Ratones , Mutación , Fenotipo , Unión Proteica , Transducción de Señal , Xenopus laevis
8.
Dev Biol ; 407(1): 1-11, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26365900

RESUMEN

Primitive erythropoiesis is regulated in a non cell-autonomous fashion across evolution from frogs to mammals. In Xenopus laevis, signals from the overlying ectoderm are required to induce the mesoderm to adopt an erythroid fate. Previous studies in our lab identified the transcription factor GATA2 as a key regulator of this ectodermal signal. To identify GATA2 target genes in the ectoderm required for red blood cell formation in the mesoderm, we used microarray analysis to compare gene expression in ectoderm from GATA2 depleted and wild type embryos. Our analysis identified components of the non-canonical and canonical Wnt pathways as being reciprocally up- and down-regulated downstream of GATA2 in both mesoderm and ectoderm. We show that up-regulation of canonical Wnt signaling during gastrulation blocks commitment to a hematopoietic fate while down-regulation of non-canonical Wnt signaling impairs erythroid differentiation. Our results are consistent with a model in which GATA2 contributes to inhibition of canonical Wnt signaling, thereby permitting progenitors to exit the cell cycle and commit to a hematopoietic fate. Subsequently, activation of non-canonical Wnt signaling plays a later role in enabling these progenitors to differentiate as mature red blood cells.


Asunto(s)
Eritropoyesis , Factor de Transcripción GATA2/fisiología , Vía de Señalización Wnt/fisiología , Proteínas de Xenopus/fisiología , Xenopus laevis/metabolismo , Animales , Proteínas Morfogenéticas Óseas/análisis , Linaje de la Célula , Gastrulación , Xenopus laevis/embriología
9.
bioRxiv ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38948827

RESUMEN

Bone morphogenetic protein 2 (BMP2) and BMP6 are key regulators of systemic iron homeostasis. All BMPs are generated as inactive precursor proteins that dimerize and are cleaved to generate the bioactive ligand and inactive prodomain fragments, but nothing is known about how BMP2 or BMP6 homodimeric or heterodimeric precursor proteins are proteolytically activated. Here, we conducted in vitro cleavage assays, which revealed that BMP2 is sequentially cleaved by furin at two sites, initially at a site upstream of the mature ligand, and then at a site adjacent to the ligand domain, while BMP6 is cleaved at a single furin motif. Cleavage of both sites of BMP2 is required to generate fully active BMP2 homodimers when expressed in Xenopus embryos or liver endothelial cells, and fully active BMP2/6 heterodimers in Xenopus . We analyzed BMP activity in Xenopus embryos expressing chimeric proteins consisting of the BMP2 prodomain and BMP6 ligand domain, or vice versa. We show that the prodomain of BMP2 is necessary and sufficient to generate active BMP6 homodimers and BMP2/6 heterodimers, whereas the BMP6 prodomain cannot generate active BMP2 homodimers or BMP2/6 heterodimers. We examined BMP2 and BMP6 homodimeric and heterodimeric ligands generated from native and chimeric precursor proteins expressed in Xenopus embryos. Whereas native BMP6 is not cleaved when expressed alone, it is cleaved to generate BMP2/6 heterodimers when co-expressed with BMP2. Furthermore, BMP2-6 chimeras are cleaved to generate BMP6 homodimers. Our findings reveal an important role for the BMP2 prodomain in dimerization and proteolytic activation of BMP6.

10.
Dev Genes Evol ; 223(5): 279-87, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23563729

RESUMEN

Mandible shape in the mouse is a complex trait that is influenced by many genetic factors. However, little is known about the action of single genes on adult mandible shape so far, since most developmentally relevant genes are already required during embryogenesis, i.e., knockouts lead to embryonic death or severe deformations, before the mandible is fully formed. We employ here a geometric morphometric approach to identify subtle phenotypic differences caused by dosage effects of candidate genes. We use mouse strains with specific gene modifications (knockouts and knockins) to compare heterozygous animals with controls from the same stock, which is expected to be equivalent to a change of gene expression of the respective locus. Such differences in expression level are also likely to occur as part of the natural variation. We focus on Bmp pathway genes (Bmp4, its antagonist Noggin, and combinations of Bmp5-7 genotypes), but include also two other developmental control genes suspected to affect mandible development in some way (Egfr and Irf6). In addition, we study the effects of Hoxd13, as well as an extracellular matrix constituent (Col2a1). We find that subtle but significant shape differences are caused by differences in gene dosage of several of these genes. The changes seen for Bmp4 and Noggin are partially compatible with the action of these genes known from birds and fish. We find significant shape changes also for Hoxd13, although this gene has so far only been implicated in skeletal patterning processes of the limbs. Comparing the effect sizes of gene dosage changes to the variation found in natural populations of mice as well as quantitative trait loci (QTL) effects on mandible shape, we find that the effect sizes caused by gene dosage changes are at the lower end of the spectrum of natural variation, but larger than the average additive effects found in QTL studies. We conclude that studying gene dosage effects have the potential to provide new insights into aspects of craniofacial development, variation, and evolution.


Asunto(s)
Dosificación de Gen , Mandíbula/anatomía & histología , Ratones/anatomía & histología , Ratones/genética , Sitios de Carácter Cuantitativo , Transducción de Señal , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Mandíbula/fisiología , Fenotipo
11.
J Biol Chem ; 286(24): 21876-85, 2011 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-21521695

RESUMEN

Transforming growth factor (TGF)-ß family proteins are synthesized as precursors that are cleaved to generate an active ligand. Previous studies suggest that TGF-ß activity can be controlled by lysosomal degradation of both precursor proteins and ligands, but how these soluble proteins are trafficked to the lysosome is incompletely understood. The current studies show that sortilin selectively co-immunoprecipitates with the cleaved prodomain and/or precursor form of TGF-ß family members. Furthermore, sortilin co-localizes with, and enhances accumulation of a nodal family member in the Golgi. Co-expression of sortilin with TGF-ß family members leads to decreased accumulation of precursor proteins and cleavage products and this is attenuated by lysosomal, but not proteosomal inhibitors. In Xenopus embryos, overexpression of sortilin leads to a decrease in phospho-Smad2 levels and phenocopies loss of nodal signaling. Conversely, down-regulation of sortilin expression in HeLa cells leads to an up-regulation of endogenous bone morphogenic protein pathway activation, as indicated by an increase in phospho-Smad1/5/8 levels. Our results suggest that sortilin negatively regulates TGF-ß signaling by diverting trafficking of precursor proteins to the lysosome during transit through the biosynthetic pathway.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Regulación del Desarrollo de la Expresión Génica , Lisosomas/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Animales , Proteínas Morfogenéticas Óseas/genética , ADN Complementario/metabolismo , Endocitosis , Aparato de Golgi/metabolismo , Células HEK293 , Células HeLa , Humanos , Modelos Biológicos , Transducción de Señal , Xenopus laevis
12.
Dev Biol ; 346(1): 102-12, 2010 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-20659445

RESUMEN

BMP4 is synthesized as an inactive precursor that is cleaved at two sites during maturation: initially at a site (S1) adjacent to the ligand domain, and then at an upstream site (S2) within the prodomain. Cleavage at the second site regulates the stability of mature BMP4 and this in turn influences its signaling intensity and range of action. The Drosophila ortholog of BMP4, Dpp, functions as a long- or short-range signaling molecule in the wing disc or embryonic midgut, respectively but mechanisms that differentially regulate its bioactivity in these tissues have not been explored. In the current studies we demonstrate, by dpp mutant rescue, that cleavage at the S2 site of proDpp is required for development of the wing and leg imaginal discs, whereas cleavage at the S1 site is sufficient to rescue Dpp function in the midgut. Both the S1 and S2 sites of proDpp are cleaved in the wing disc, and S2-cleavage is essential to generate sufficient ligand to exceed the threshold for pMAD activation at both short- and long-range in most cells. By contrast, proDpp is cleaved at the S1 site alone in the embryonic mesoderm and this generates sufficient ligand to activate physiological target genes in neighboring cells. These studies provide the first biochemical and genetic evidence that selective cleavage of the S2 site of proDPP provides a tissue-specific mechanism for regulating Dpp activity, and that differential cleavage can contribute to, but is not an absolute determinant of signaling range.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/embriología , Secuencia de Aminoácidos , Animales , Proteína Morfogenética Ósea 2/metabolismo , Proteína Morfogenética Ósea 4/metabolismo , Proteínas de Unión al ADN/análisis , Proteínas de Drosophila/análisis , Proteínas de Drosophila/química , Furina/fisiología , Humanos , Mesodermo/metabolismo , Datos de Secuencia Molecular , Especificidad de Órganos , Precursores de Proteínas/metabolismo , Estructura Terciaria de Proteína , Transducción de Señal , Factores de Transcripción/análisis , Alas de Animales/embriología , Xenopus
13.
Blood ; 114(20): 4393-401, 2009 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-19759357

RESUMEN

Bone morphogenetic protein 4 (BMP4) is required for mesoderm commitment to the hematopoietic lineage during early embryogenesis. However, deletion of BMP4 is early embryonically lethal and its functional role in definitive hematopoiesis is unknown. Consequently, we used a BMP4 hypomorph to investigate the role of BMP4 in regulating hematopoietic stem cell (HSC) function and maintaining steady-state hematopoiesis in the adult. Reporter gene expression shows that Bmp4 is expressed in cells associated with the hematopoietic microenvironment including osteoblasts, endothelial cells, and megakaryocytes. Although resting hematopoiesis is normal in a BMP4-deficient background, the number of c-Kit+, Sca-1+, Lineage- cells is significantly reduced. Serial transplantation studies reveal that BMP4-deficient recipients have a microenvironmental defect that reduces the repopulating activity of wild-type HSCs. This defect is even more pronounced in a parabiosis model that demonstrates a profound reduction in wild-type hematopoietic cells within the bone marrow of BMP4-deficient recipients. Furthermore, wild-type HSCs that successfully engraft into the BMP4-deficient bone marrow show a marked decrease in functional stem cell activity when tested in a competitive repopulation assay. Taken together, these findings indicate BMP4 is a critical component of the hematopoietic microenvironment that regulates both HSC number and function.


Asunto(s)
Proteína Morfogenética Ósea 4/metabolismo , Hematopoyesis/fisiología , Células Madre Hematopoyéticas/metabolismo , Nicho de Células Madre/metabolismo , Animales , Apoptosis/fisiología , Western Blotting , Citometría de Flujo , Expresión Génica , Ratones , Parabiosis
14.
J Vis Exp ; (173)2021 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-34369935

RESUMEN

The two arms of the Transforming Growth Factor ß (Tgfß) superfamily, represented by Tgfß/Nodal or Bone morphogenetic protein (Bmp) ligands, respectively, play essential roles in embryonic development and adult homeostasis. Members of the Tgfß family are made as inactive precursors that dimerize and fold within the endoplasmic reticulum. The precursor is subsequently cleaved into ligand and prodomain fragments. Although only the dimeric ligand can engage Tgfß receptors and activate downstream signaling, there is growing recognition that the prodomain moiety contributes to ligand activity. This article describes a protocol that can be used to identify cleavage products generated during activation of Tgfß precursor proteins. RNA encoding Tgfß precursors are first microinjected into X. laevis embryos. The following day, cleavage products are collected from the blastocoele of gastrula stage embryos and analyzed on Western blots. This protocol can be completed relatively quickly, does not require expensive reagents and provides a source of concentrated Tgfß cleavage products under physiologic conditions.


Asunto(s)
Proteínas Morfogenéticas Óseas , Factor de Crecimiento Transformador beta , Animales , Blastocisto/metabolismo , Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/metabolismo , Regulación del Desarrollo de la Expresión Génica , Factor de Crecimiento Transformador beta/genética , Factores de Crecimiento Transformadores , Proteínas de Xenopus/metabolismo , Xenopus laevis/metabolismo
15.
J Biol Chem ; 284(40): 27157-66, 2009 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-19651771

RESUMEN

Bone morphogenetic proteins (BMPs) require proteolytic activation by members of the proprotein convertase (PC) family. Pro-BMP4 is initially cleaved at a site adjacent to the mature ligand domain (S1) and then at an upstream site (S2) within the prodomain. Cleavage at the S2 site, which appears to occur in a tissue-specific fashion, regulates the activity and signaling range of mature BMP4. To test the hypothesis that tissue-specific cleavage of pro-BMP4 is regulated by differential expression of a site-specific protease, we identified the PCs that cleave each site in vivo. In Xenopus oocytes, furin and PC6 function redundantly to cleave both the S1 and S2 sites of pro-BMP4, as evidenced by the results of antisense-mediated gene knockdown and the use of the furin- and PC6-selective inhibitor alpha(1)-PDX. By contrast, alpha(1)-PDX blocked cleavage of the S2 but not the S1 site of pro-BMP4 in embryos, suggesting the existence of a developmentally regulated S1 site-specific convertase. This protease is likely to be PC7 based on knowledge of its required substrate cleavage motif and resistance to alpha(1)-PDX. Consistent with this prediction, an alpha(1)-PDX variant engineered to target PC7, in addition to furin and PC6, completely inhibited cleavage of BMP4 in oocytes and embryos. Further studies showed that pc7 transcripts are expressed and polyadenylated, and that the PC7 precursor protein undergoes efficient autocatalytic activation in both oocytes and embryos. These results suggest that PC7, or a convertase with similar substrate specificity, functions to selectively cleave the S1 site of pro-BMP4 in a developmentally regulated fashion.


Asunto(s)
Proteína Morfogenética Ósea 4/química , Proteína Morfogenética Ósea 4/metabolismo , Furina/metabolismo , Subtilisinas/metabolismo , Proteínas de Xenopus/metabolismo , Secuencias de Aminoácidos , Animales , Sitios de Unión , Inhibidores Enzimáticos/farmacología , Espacio Extracelular/metabolismo , Femenino , Humanos , Mutación , Oocitos/metabolismo , Poliadenilación , Unión Proteica/efectos de los fármacos , Estructura Terciaria de Proteína , ARN Mensajero/genética , ARN Mensajero/metabolismo , Especificidad por Sustrato , Subtilisinas/genética , Xenopus/embriología , Xenopus/metabolismo , alfa 1-Antitripsina/genética , alfa 1-Antitripsina/farmacología
16.
Mol Cell Biol ; 26(2): 425-37, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16382135

RESUMEN

Fanconi anemia (FA) is a multigene cancer susceptibility disorder characterized by cellular hypersensitivity to DNA interstrand cross-linking agents such as mitomycin C (MMC). FA proteins are suspected to function at the interface between cell cycle checkpoints, DNA repair, and DNA replication. Using replicating extracts from Xenopus eggs, we developed cell-free assays for FA proteins (xFA). Recruitment of the xFA core complex and xFANCD2 to chromatin is strictly dependent on replication initiation, even in the presence of MMC indicating specific recruitment to DNA lesions encountered by the replication machinery. The increase in xFA chromatin binding following treatment with MMC is part of a caffeine-sensitive S-phase checkpoint that is controlled by xATR. Recruitment of xFANCD2, but not xFANCA, is dependent on the xATR-xATR-interacting protein (xATRIP) complex. Immunodepletion of either xFANCA or xFANCD2 from egg extracts results in accumulation of chromosomal DNA breaks during replicative synthesis. Our results suggest coordinated chromatin recruitment of xFA proteins in response to replication-associated DNA lesions and indicate that xFA proteins function to prevent the accumulation of DNA breaks that arise during unperturbed replication.


Asunto(s)
Proteínas Portadoras/metabolismo , Daño del ADN/fisiología , Replicación del ADN , Proteína del Grupo de Complementación A de la Anemia de Fanconi/metabolismo , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Proteínas de Xenopus/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Cafeína/farmacología , Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Reactivos de Enlaces Cruzados/farmacología , Reparación del ADN/fisiología , Femenino , Técnicas In Vitro , Mitomicina/farmacología , Datos de Secuencia Molecular , Oocitos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Fase S/efectos de los fármacos , Fase S/fisiología , Homología de Secuencia de Aminoácido , Xenopus laevis
17.
Methods Mol Biol ; 1891: 115-133, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30414129

RESUMEN

Bone morphogenetic proteins (Bmps) are synthesized as inactive precursors that are cleaved to generate active ligands, along with prodomain fragments that can modulate growth factor activity. Here we provide three protocols that can be used to examine the process of proteolytic activation of Bmps. The first protocol describes how to generate radiolabeled Bmp precursor proteins in Xenopus oocytes and then analyze the time course of precursor cleavage by recombinant enzymes in vitro. The second protocol details how to analyze cleavage of radiolabeled precursor proteins in Xenopus oocytes over time using pulse-chase analysis and autoradiography. This protocol can also be used to analyze folding and cleavage of radiolabeled precursor proteins at steady state. Finally, the third protocol details methods for isolating Bmp cleavage products from the blastocoele of Xenopus embryos and then analyzing them on immunoblots.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Animales , Embrión no Mamífero , Marcaje Isotópico , Oocitos/metabolismo , Proproteína Convertasas , Proteolisis , Xenopus laevis
18.
Elife ; 82019 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-31566563

RESUMEN

BMP7/BMP2 or BMP7/BMP4 heterodimers are more active than homodimers in vitro, but it is not known whether these heterodimers signal in vivo. To test this, we generated knock in mice carrying a mutation (Bmp7R-GFlag) that prevents proteolytic activation of the dimerized BMP7 precursor protein. This mutation eliminates the function of BMP7 homodimers and all other BMPs that normally heterodimerize with BMP7. While Bmp7 null homozygotes are live born, Bmp7R-GFlag homozygotes are embryonic lethal and have broadly reduced BMP activity. Furthermore, compound heterozygotes carrying the Bmp7R-G allele together with a null allele of Bmp2 or Bmp4 die during embryogenesis with defects in ventral body wall closure and/or the heart. Co-immunoprecipitation assays confirm that endogenous BMP4/7 heterodimers exist. Thus, BMP7 functions predominantly as a heterodimer with BMP2 or BMP4 during mammalian development, which may explain why mutations in either Bmp4 or Bmp7 lead to a similar spectrum of congenital defects in humans.


Asunto(s)
Proteína Morfogenética Ósea 2/metabolismo , Proteína Morfogenética Ósea 4/metabolismo , Proteína Morfogenética Ósea 7/metabolismo , Desarrollo Embrionario , Multimerización de Proteína , Animales , Proteína Morfogenética Ósea 7/genética , Técnicas de Sustitución del Gen , Ratones , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo
19.
Mol Biol Cell ; 29(5): 523-531, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29298840

RESUMEN

Toll-like receptor 4 interactor with leucine-rich repeats (Tril) functions as a coreceptor for Toll-like receptors (Tlrs) to mediate innate immune responses in adults. In embryos, Tril signals to promote degradation of the Bmp inhibitor, Smad7, to allow for blood formation. It is not known whether this function requires, or is independent of, Tlrs. In the current studies, we performed a structure-function analysis, which indicated that the fibronectin type III (FN) domain and the intracellular domain of Tril are required to trigger Smad7 degradation in Xenopus embryos. Furthermore, we found evidence suggesting that a Tril deletion mutant lacking the FN domain (Tril∆FN) can dominantly inhibit signaling by endogenous Tril when overexpressed. This finding raises the possibility that the FN domain functions to bind endogenous Tril ligands. We also show that Tril cycles between the cell surface and endosomes and that the Tril extracellular domain, as well as cadherin based cell-cell adhesion, are required for cell surface retention, while the intracellular domain is required for internalization in Xenopus ectodermal explants. Using a CHO cell aggregation assay, we show that, unlike other transmembrane proteins that contain leucine-rich repeats, Tril is not sufficient to mediate homophilic adhesion.


Asunto(s)
Fibronectinas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Transducción de Señal , Proteína smad7/metabolismo , Proteínas de Xenopus/metabolismo , Animales , Células CHO , Cricetulus , Endosomas/metabolismo , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Leucina/química , Ligandos , Proteínas de la Membrana , Proteína smad7/genética , Proteínas de Xenopus/genética , Xenopus laevis/embriología
20.
Mol Biol Cell ; 15(11): 5012-20, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15356272

RESUMEN

Pro bone morphogenetic protein-4 (BMP-4) is initially cleaved at a consensus furin motif adjacent to the mature ligand domain (the S1 site), and this allows for subsequent cleavage at an upstream motif (the S2 site). Previous studies have shown that S2 cleavage regulates the activity and signaling range of mature BMP-4, but the mechanism by which this occurs is unknown. Here, we show that the pro- and mature domains of BMP-4 remain noncovalently associated after S1 cleavage, generating a complex that is targeted for rapid degradation. Degradation requires lysosomal and proteosomal function and is enhanced by interaction with heparin sulfate proteoglycans. Subsequent cleavage at the S2 site liberates mature BMP-4 from the prodomain, thereby stabilizing the protein. We also show that cleavage at the S2, but not the S1 site, is enhanced at reduced pH, consistent with the possibility that the two cleavages occur in distinct subcellular compartments. Based on these results, we propose a model for how cleavage at the upstream site regulates the activity and signaling range of mature BMP-4 after it has been released from the prodomain.


Asunto(s)
Proteínas Morfogenéticas Óseas/química , Proteínas Morfogenéticas Óseas/metabolismo , Secuencias de Aminoácidos , Animales , Transporte Biológico , Western Blotting , Proteína Morfogenética Ósea 4 , ADN Complementario/metabolismo , Furina/química , Proteoglicanos de Heparán Sulfato/química , Histidina/química , Concentración de Iones de Hidrógeno , Inmunoprecipitación , Cinética , Ligandos , Lisosomas/metabolismo , Modelos Biológicos , Oocitos/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Transporte de Proteínas , Proteoma , Transducción de Señal , Xenopus , Proteínas de Xenopus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA