Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Oecologia ; 196(2): 441-453, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34009471

RESUMEN

As the environment is getting warmer and species are redistributed, consumers can be forced to adjust their interactions with available prey, and this could have cascading effects within food webs. To better understand the capacity for foraging flexibility, our study aimed to determine the diet variability of an ectotherm omnivore inhabiting kelp forests, the sea urchin Echinus esculentus, along its entire latitudinal distribution in the northeast Atlantic. Using a combination of gut content and stable isotope analyses, we determined the diet and trophic position of sea urchins at sites in Portugal (42° N), France (49° N), southern Norway (63° N), and northern Norway (70° N), and related these results to the local abundance and distribution of putative food items. With mean estimated trophic levels ranging from 2.4 to 4.6, omnivory and diet varied substantially within and between sites but not across latitudes. Diet composition generally reflected prey availability within epiphyte or understorey assemblages, with local affinities demonstrating that the sea urchin adjusts its foraging to match the small-scale distribution of food items. A net "preference" for epiphytic food sources was found in northern Norway, where understorey food was limited compared to other regions. We conclude that diet change may occur in response to food source redistribution at multiple spatial scales (microhabitats, sites, regions). Across these scales, the way that key consumers alter their foraging in response to food availability can have important implication for food web dynamics and ecosystem functions along current and future environmental gradients.


Asunto(s)
Ecosistema , Cadena Alimentaria , Animales , Conducta Alimentaria , Francia , Noruega , Erizos de Mar
2.
Ecol Lett ; 18(7): 677-86, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25975532

RESUMEN

Species interactions are integral drivers of community structure and can change from competitive to facilitative with increasing environmental stress. In subtidal marine ecosystems, however, interactions along physical stress gradients have seldom been tested. We observed seaweed canopy interactions across depth and latitudinal gradients to test whether light and temperature stress structured interaction patterns. We also quantified interspecific and intraspecific interactions among nine subtidal canopy seaweed species across three continents to examine the general nature of interactions in subtidal systems under low consumer pressure. We reveal that positive and neutral interactions are widespread throughout global seaweed communities and the nature of interactions can change from competitive to facilitative with increasing light stress in shallow marine systems. These findings provide support for the stress gradient hypothesis within subtidal seaweed communities and highlight the importance of canopy interactions for the maintenance of subtidal marine habitats experiencing environmental stress.


Asunto(s)
Aclimatación , Ecosistema , Kelp/fisiología , Estrés Fisiológico , Australia , Kelp/clasificación , Luz , Temperatura
3.
Mar Pollut Bull ; 177: 113497, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35245771

RESUMEN

We conducted a short-term field sampling complemented with time integrating stable isotope analysis to holistically investigate status and ecological interactions in a remote NE Atlantic Zostera marina meadow. We found high nutrient water concentrations, large biomass of fast-growing, ephemeral macroalgae, low abundance, and biodiversity of epifauna and a food web with thornback ray (Raja clavata) as intermediate and cod (Gadus morhua) as top predator. We observed no variation with increasing depth (3.5-11 m) except for decreasing shoot density and biomass of Zostera and macroalgae. Our results indicate that the Finnøya Zostera ecosystem is eutrophicated. During the past three to four decades, nutrients from aquaculture have steadily increased to reach 75% of anthropogenic input while the coastal top predator cod has decreased by 50%. We conclude that bottom-up regulation is a predominant driver of change since top-down regulation is generally weak in low density and exposed Zostera ecosystems such as Finnøya.


Asunto(s)
Algas Marinas , Zosteraceae , Animales , Biomasa , Ecosistema , Cadena Alimentaria , Zosteraceae/fisiología
4.
Biol Rev Camb Philos Soc ; 97(4): 1449-1475, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35255531

RESUMEN

Kelp forest ecosystems and their associated ecosystem services are declining around the world. In response, marine managers are working to restore and counteract these declines. Kelp restoration first started in the 1700s in Japan and since then has spread across the globe. Restoration efforts, however, have been largely disconnected, with varying methodologies trialled by different actors in different countries. Moreover, a small subset of these efforts are 'afforestation', which focuses on creating new kelp habitat, as opposed to restoring kelp where it previously existed. To distil lessons learned over the last 300 years of kelp restoration, we review the history of kelp restoration (including afforestation) around the world and synthesise the results of 259 documented restoration attempts spanning from 1957 to 2020, across 16 countries, five languages, and multiple user groups. Our results show that kelp restoration projects have increased in frequency, have employed 10 different methodologies and targeted 17 different kelp genera. Of these projects, the majority have been led by academics (62%), have been conducted at sizes of less than 1 ha (80%) and took place over time spans of less than 2 years. We show that projects are most successful when they are located near existing kelp forests. Further, disturbance events such as sea-urchin grazing are identified as regular causes of project failure. Costs for restoration are historically high, averaging hundreds of thousands of dollars per hectare, therefore we explore avenues to reduce these costs and suggest financial and legal pathways for scaling up future restoration efforts. One key suggestion is the creation of a living database which serves as a platform for recording restoration projects, showcasing and/or re-analysing existing data, and providing updated information. Our work establishes the groundwork to provide adaptive and relevant recommendations on best practices for kelp restoration projects today and into the future.


Asunto(s)
Ecosistema , Restauración y Remediación Ambiental , Kelp , Animales , Cadena Alimentaria , Kelp/fisiología , Erizos de Mar/fisiología
5.
Ambio ; 39(2): 148-58, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20653277

RESUMEN

For many years, the planning and management of terrestrial areas has been supported by a detailed knowledge of the distribution of habitats and their associated species. However, the detailed mapping of biological resources in extent coastal areas, such as the Norwegian coastal zone, is unrealistic due to its enormous coastline. Here, we present a useful and feasible approach and a set of simple, cost-effective methods which are suitable for providing a broad-scale overview of marine habitats and fish resources. This approach was developed in conjunction with a pioneer study conducted along the southern coast of the Skagerrak, where we combined knowledge gathered from local fishermen with scientific knowledge of important species and nature types to establish a coastal sea mapping program. GIS modeling tools were used in both the mapping program and to integrate local and scientific knowledge into digital maps made available to local area management. This multi-faceted approach, which combines local knowledge and scientific methods, provides valuable information with respect to marine biodiversity, and has been used extensively by local environmental management.


Asunto(s)
Ecosistema , Peces/fisiología , Plantas , Animales , Conservación de los Recursos Naturales , Demografía , Monitoreo del Ambiente , Sistemas de Información Geográfica , Modelos Biológicos , Noruega , Océanos y Mares
6.
Ecol Evol ; 9(5): 2883-2897, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30891223

RESUMEN

The processes limiting the population recovery of the kelp Saccharina latissima after recent large-scale loss from the south coast of Norway are poorly understood. Previous investigations do, however, suggest that the impacts of biotic interactions (epibiosis and competition) and increased water turbidity are important. We investigated the depth-related patterns of growth, epibiosis, and mortality in two sample populations of kelp, from the south and the southwest coast of Norway. The investigations were performed over a period of seven months, in a crossed translocational study, where kelps were mounted on rigs at six depths (1, 3, 6, 9, 15, and 24 m). In a second experiment, the amounts of light blocked by different epibiont layers growing on the kelp frond were investigated. While growth decreased with depth in spring and summer, the kelp grew faster at 15 m than at shallower depths in fall. Survival was low both in shallow water and below 15 m depth. Epibionts covered the kelp growing at depths from 1 to 9 m, and the laboratory study showed that the coverage may have deprived the individuals of as much as 90% of the available light. Although the depth-related results we present apply-in the strictest sense-only to kelp translocated on rigs, we argue that the relative patterns are relevant for natural populations. Growth and survival of S. latissima is likely to be reduced by heavy loads of epibionts, while depths where epibionts are sparse may be close to the lower limit of the kelps depth distribution along the south coast of Norway. This suggests that a vertical squeeze, or narrowing of the distribution range of kelp forests may be occurring in Norway.

7.
Ecol Evol ; 9(5): 2847-2862, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30891221

RESUMEN

Ongoing changes along the northeastern Atlantic coastline provide an opportunity to explore the influence of climate change and multitrophic interactions on the recovery of kelp. Here, vast areas of sea urchin-dominated barren grounds have shifted back to kelp forests, in parallel with changes in sea temperature and predator abundances. We have compiled data from studies covering more than 1,500-km coastline in northern Norway. The dataset has been used to identify regional patterns in kelp recovery and sea urchin recruitment, and to relate these to abiotic and biotic factors, including structurally complex substrates functioning as refuge for sea urchins. The study area covers a latitudinal gradient of temperature and different levels of predator pressure from the edible crab (Cancer pagurus) and the red king crab (Paralithodes camtschaticus). The population development of these two sea urchin predators and a possible predator on crabs, the coastal cod (Gadus morhua), were analyzed. In the southernmost and warmest region, kelp forests recovery and sea urchin recruitment are mainly low, although sea urchins might also be locally abundant. Further north, sea urchin barrens still dominate, and juvenile sea urchin densities are high. In the northernmost and cold region, kelp forests are recovering, despite high recruitment and densities of sea urchins. Here, sea urchins were found only in refuge habitats, whereas kelp recovery occurred mainly on open bedrock. The ocean warming, the increase in the abundance of edible crab in the south, and the increase in invasive red king crab in the north may explain the observed changes in kelp recovery and sea urchin distribution. The expansion of both crab species coincided with a population decline in the top-predator coastal cod. The role of key species (sea urchins, kelp, cod, and crabs) and processes involved in structuring the community are hypothesized in a conceptual model, and the knowledge behind the suggested links and interactions is explored.

8.
Sci Rep ; 9(1): 578, 2019 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-30679622

RESUMEN

Coralline algae form extensive maerl and rhodolith habitats that support a rich biodiversity. Calcium carbonate harvesting as well as trawling activities threatens this ecosystem. Eleven species were recorded so far as maerl-forming in NE Atlantic, but identification based on morphological characters is unreliable. As for most red algae, we now use molecular characters to resolve identification of these taxa. However, obtaining DNA sequences requires time and resource demanding methods. The purpose of our study was to improve methods for achieving simple DNA extraction, amplification, sequencing and sequence analysis to allow robust identification of maerl species and other coralline algae. Our novel and easy DNA preparation method for coralline algae was of sufficient quality for qPCR amplification and sequencing of all 47 tested samples. The new psbA qPCR assay successfully amplified a 350 bp fragment identifying six species and uncovering two new Operational Taxonomic Units. Molecular results were corroborated with anatomical examination using i.e. scanning electron microscopy. Finally, the qPCR assay was coupled with High Resolution Melt analysis that successfully differentiated the closely related species Lithothamnion erinaceum and L. cf. glaciale. This DNA preparation and qPCR technique should vitalize coralline research by reducing time and cost associated with molecular systematics.


Asunto(s)
Antozoos/microbiología , Código de Barras del ADN Taxonómico/métodos , ADN de Algas/aislamiento & purificación , Desnaturalización de Ácido Nucleico , Complejo de Proteína del Fotosistema II/genética , Rhodophyta/clasificación , Rhodophyta/genética , Animales , ADN de Algas/química , ADN de Algas/genética , Rhodophyta/enzimología
9.
Sci Rep ; 6: 23800, 2016 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-27025314

RESUMEN

A test deployment of a time-lapse camera lander in the deep Oslofjord (431 m) was used to obtain initial information on the response of benthic fauna to macroalgal debris. Three macroalgal species were used on the lander baited plate: Fucus serratus, Saccharina latissima and Laminaria hyperborea and observed during 41.5 hours. The deep-water shrimp Pandalus borealis were attracted to the macroalgae rapidly (3 min after the lander reached the seafloor), followed by amphipods. Shrimp abundances were significantly higher in areas covered by macroalgae compared to the adjacent seafloor and the number of shrimp visiting the macroalgae increased with time. Amphipods arrived 13 hours later and were observed mainly on decaying L. hyperborea. The abundance of amphipods on L. hyperborea increased rapidly, reaching a peak at 31 h after deployment. These initial observations suggest that debris from kelp forests and other macroalgal beds may play an important role in fuelling deep benthic communities in the outer Oslofjord and, potentially, enhance secondary production of commercial species such as P. borealis.


Asunto(s)
Anfípodos/fisiología , Kelp , Pandalidae/fisiología , Distribución Animal , Animales , Conducta Alimentaria , Noruega , Imagen de Lapso de Tiempo
10.
Oecologia ; 105(4): 524-536, 1996 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28307146

RESUMEN

Stability properties of the barren state of a kelp forest-sea urchin system were studied in northern Norway. The ability of the sea urchin Strongylocentrotus droebachiensis to maintain high population densities and recover from perturbations, and the succession of kelp forest revegetation, were studied experimentally by reducing the sea urchin density on a barren skerry. Additional information was obtained from community changes following a natural, but patchy, sea urchin mortality that varied between sites. On the barren grounds, high sea urchin densities (30 50 per m2) is maintained by annual recruitment. Severe reductions of sea urchin densities initiated luxuriant kelp growth, while more moderate reductions allowed establishment of opportunistic algae (during spring and early summer), but no kelps. Succession of algal growth, after the severe decline in sea urchin densities, followed a predictable pattern. At first the substrate was colonized by filamentous algae, but within few weeks they were outcompeted by the fast growing kelp Laminaria saccharina. After 3-4 years of the removal experiment, the slower-growing, long-lived kelp L. hyperborea became increasingly dominant. Increased food availability after reduction in sea urchin density led to increased individual growth of the remaining sea urchins. However, the population density did not increase, neither from recruitment nor immigration from adjacent areas with high sea urchin densities. Possibly, early establishment of a dense kelp stand, may represent a breakpoint in the ability of sea urchins to reestablish a barren state. The ability of L. saccharina quickly to invade and monopolize an area may have both positive and negative effects on the succession towards the climax L. hyperborea kelp forest. Competitive interactions may slow the process, but development of a dense stand of L. saccharina will also reduce grazing risk on scattered recruits of the more slowly growing L. hyperborea.

11.
BMC Res Notes ; 7: 699, 2014 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-25291990

RESUMEN

BACKGROUND: The green sea urchin Strongylocentrotus droebachiensis has a wide circumpolar distribution and plays a key role in coastal ecosystems worldwide by destructively grazing macroalgae beds and turn them into marine deserts, so-called barren grounds. In the past decades, large established kelp forests have been overgrazed and transformed to such barren grounds on the Norwegian coast. This has important repercussions for the coastal diversity and production, including reproduction of several fish species relying on the kelp forests as nurseries. Genetic diversity is an important parameter for the study and further anticipation of this large scale phenomenon. FINDINGS: Microsatellites were developed using a Norwegian S. droebachiensis individual primarily for the study of Northeast Atlantic populations. The 10 new microsatellite loci were amplified using M13 forward tails, enabling the use of M13 fluorescent tagged primers for multiplex reading. Among these loci, 2 acted polysomic and should therefore not be considered useful for population genetic analysis. We screened 96 individuals sampled from 4 different sites along the Norwegian coast which have shown unexpected diversity. CONCLUSIONS: The new microsatellite loci should be a useful resource for further research into connectivity among S. droebachiensis populations, and assessing the risks for spreading and new overgrazing events.


Asunto(s)
Cartilla de ADN/metabolismo , Sitios Genéticos , Repeticiones de Microsatélite/genética , Strongylocentrotus/genética , Animales , Marcadores Genéticos , Datos de Secuencia Molecular , Coloración y Etiquetado
12.
PLoS One ; 9(6): e100222, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24949954

RESUMEN

The spatial distribution of kelp (Laminaria hyperborea) and sea urchins (Strongylocentrotus droebachiensis) in the NE Atlantic are highly related to physical factors and to temporal changes in temperature. On a large scale, we identified borders for kelp recovery and sea urchin persistence along the north-south gradient. Sea urchin persistence was also related to the coast-ocean gradient. The southern border corresponds to summer temperatures exceeding about 10°C, a threshold value known to be critical for sea urchin recruitment and development. The outer border along the coast-ocean gradient is related to temperature, wave exposure and salinity. On a finer scale, kelp recovery occurs mainly at ridges in outer, wave exposed, saline and warm areas whereas sea urchins still dominate in inner, shallow and cold areas, particularly in areas with optimal current speed for sea urchin foraging. In contrast to other studies in Europe, we here show a positive influence of climate change to presence of a long-lived climax canopy-forming kelp. The extent of the coast-ocean gradient varies within the study area, and is especially wide in the southern part where the presence of islands and skerries increases the area of the shallow coastal zone. This creates a large area with intermediate physical conditions for the two species and a mosaic of kelp and sea urchin dominated patches. The statistical models (GAM and BRT) show high performance and indicate recovery of kelp in 45-60% of the study area. The study shows the value of combining a traditional (GAM) and a more complex (BRT) modeling approach to gain insight into complex spatial patterns of species or habitats. The results, methods and approaches are of general ecological relevance regardless of ecosystems and species, although they are particularly relevant for understanding and exploring the corresponding changes between algae and grazers in different coastal areas.


Asunto(s)
Herbivoria , Kelp , Fenómenos Físicos , Erizos de Mar , Análisis Espacio-Temporal , Animales , Océano Atlántico , Cambio Climático , Modelos Estadísticos , Temperatura
13.
Mol Ecol ; 13(7): 1923-41, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15189214

RESUMEN

As the most widespread seagrass in temperate waters of the Northern Hemisphere, Zostera marina provides a unique opportunity to investigate the extent to which the historical legacy of the last glacial maximum (LGM18 000-10 000 years bp) is detectable in modern population genetic structure. We used sequences from the nuclear rDNA-internal transcribed spacer (ITS) and chloroplast matK-intron, and nine microsatellite loci to survey 49 populations (> 2000 individuals) from throughout the species' range. Minimal sequence variation between Pacific and Atlantic populations combined with biogeographical groupings derived from the microsatellite data, suggest that the trans-Arctic connection is currently open. The east Pacific and west Atlantic are more connected than either is to the east Atlantic. Allelic richness was almost two-fold higher in the Pacific. Populations from putative Atlantic refugia now represent the southern edges of the distribution and are not genetically diverse. Unexpectedly, the highest allelic diversity was observed in the North Sea-Wadden Sea-southwest Baltic region. Except for the Mediterranean and Black Seas, significant isolation-by-distance was found from ~150 to 5000 km. A transition from weak to strong isolation-by-distance occurred at ~150 km among northern European populations suggesting this scale as the natural limit for dispersal within the metapopulation. Links between historical and contemporary processes are discussed in terms of the projected effects of climate change on coastal marine plants. The identification of a high genetic diversity hotspot in Northern Europe provides a basis for restoration decisions.


Asunto(s)
Demografía , Variación Genética , Genética de Población , Magnoliopsida/genética , Filogenia , Secuencia de Bases , Análisis por Conglomerados , Cartilla de ADN , ADN de Cloroplastos/genética , ADN Espaciador Ribosómico/genética , Frecuencia de los Genes , Geografía , Repeticiones de Microsatélite/genética , Datos de Secuencia Molecular , Océanos y Mares , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA