Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Cell ; 187(1): 110-129.e31, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38181737

RESUMEN

X chromosome inactivation (XCI) serves as a paradigm for RNA-mediated regulation of gene expression, wherein the long non-coding RNA XIST spreads across the X chromosome in cis to mediate gene silencing chromosome-wide. In female naive human pluripotent stem cells (hPSCs), XIST is in a dispersed configuration, and XCI does not occur, raising questions about XIST's function. We found that XIST spreads across the X chromosome and induces dampening of X-linked gene expression in naive hPSCs. Surprisingly, XIST also targets specific autosomal regions, where it induces repressive chromatin changes and gene expression dampening. Thereby, XIST equalizes X-linked gene dosage between male and female cells while inducing differences in autosomes. The dispersed Xist configuration and autosomal localization also occur transiently during XCI initiation in mouse PSCs. Together, our study identifies XIST as the regulator of X chromosome dampening, uncovers an evolutionarily conserved trans-acting role of XIST/Xist, and reveals a correlation between XIST/Xist dispersal and autosomal targeting.


Asunto(s)
Genes Ligados a X , ARN Largo no Codificante , Cromosoma X , Animales , Femenino , Humanos , Masculino , Ratones , Silenciador del Gen , ARN Largo no Codificante/genética , Cromosoma X/genética , Células Madre Pluripotentes/metabolismo
2.
Cell ; 168(3): 442-459.e20, 2017 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-28111071

RESUMEN

Oct4, Sox2, Klf4, and cMyc (OSKM) reprogram somatic cells to pluripotency. To gain a mechanistic understanding of their function, we mapped OSKM-binding, stage-specific transcription factors (TFs), and chromatin states in discrete reprogramming stages and performed loss- and gain-of-function experiments. We found that OSK predominantly bind active somatic enhancers early in reprogramming and immediately initiate their inactivation genome-wide by inducing the redistribution of somatic TFs away from somatic enhancers to sites elsewhere engaged by OSK, recruiting Hdac1, and repressing the somatic TF Fra1. Pluripotency enhancer selection is a stepwise process that also begins early in reprogramming through collaborative binding of OSK at sites with high OSK-motif density. Most pluripotency enhancers are selected later in the process and require OS and other pluripotency TFs. Somatic and pluripotency TFs modulate reprogramming efficiency when overexpressed by altering OSK targeting, somatic-enhancer inactivation, and pluripotency enhancer selection. Together, our data indicate that collaborative interactions among OSK and with stage-specific TFs direct both somatic-enhancer inactivation and pluripotency-enhancer selection to drive reprogramming.


Asunto(s)
Reprogramación Celular , Factores de Transcripción/metabolismo , Animales , Cromatina/metabolismo , Fibroblastos/metabolismo , Código de Histonas , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/metabolismo , Ratones , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Elementos Reguladores de la Transcripción , Factores de Transcripción SOXB1/metabolismo , Elementos Silenciadores Transcripcionales
3.
Mol Cell ; 73(2): 250-263.e5, 2019 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-30527662

RESUMEN

Metazoan chromosomes are sequentially partitioned into topologically associating domains (TADs) and then into smaller sub-domains. One class of sub-domains, insulated neighborhoods, are proposed to spatially sequester and insulate the enclosed genes through self-association and chromatin looping. However, it has not been determined functionally whether promoter-enhancer interactions and gene regulation are broadly restricted to within these loops. Here, we employed published datasets from murine embryonic stem cells (mESCs) to identify insulated neighborhoods that confine promoter-enhancer interactions and demarcate gene regulatory regions. To directly address the functionality of these regions, we depleted estrogen-related receptor ß (Esrrb), which binds the Mediator co-activator complex, to impair enhancers of genes within 222 insulated neighborhoods without causing mESC differentiation. Esrrb depletion reduces Mediator binding, promoter-enhancer looping, and expression of both nascent RNA and mRNA within the insulated neighborhoods without significantly affecting the flanking genes. Our data indicate that insulated neighborhoods represent functional regulons in mammalian genomes.


Asunto(s)
Cromosomas de los Mamíferos , Elementos de Facilitación Genéticos , Elementos Aisladores , Células Madre Embrionarias de Ratones/fisiología , Regiones Promotoras Genéticas , Transcripción Genética , Animales , Sitios de Unión , Factor de Unión a CCCTC/genética , Factor de Unión a CCCTC/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Bases de Datos Genéticas , Regulación hacia Abajo , Ratones , Unión Proteica , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Cohesinas
5.
Nature ; 587(7832): 145-151, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32908311

RESUMEN

Nuclear compartments have diverse roles in regulating gene expression, yet the molecular forces and components that drive compartment formation remain largely unclear1. The long non-coding RNA Xist establishes an intra-chromosomal compartment by localizing at a high concentration in a territory spatially close to its transcription locus2 and binding diverse proteins3-5 to achieve X-chromosome inactivation (XCI)6,7. The XCI process therefore serves as a paradigm for understanding how RNA-mediated recruitment of various proteins induces a functional compartment. The properties of the inactive X (Xi)-compartment are known to change over time, because after initial Xist spreading and transcriptional shutoff a state is reached in which gene silencing remains stable even if Xist is turned off8. Here we show that the Xist RNA-binding proteins PTBP19, MATR310, TDP-4311 and CELF112 assemble on the multivalent E-repeat element of Xist7 and, via self-aggregation and heterotypic protein-protein interactions, form a condensate1 in the Xi. This condensate is required for gene silencing and for the anchoring of Xist to the Xi territory, and can be sustained in the absence of Xist. Notably, these E-repeat-binding proteins become essential coincident with transition to the Xist-independent XCI phase8, indicating that the condensate seeded by the E-repeat underlies the developmental switch from Xist-dependence to Xist-independence. Taken together, our data show that Xist forms the Xi compartment by seeding a heteromeric condensate that consists of ubiquitous RNA-binding proteins, revealing an unanticipated mechanism for heritable gene silencing.


Asunto(s)
Silenciador del Gen , ARN Largo no Codificante/genética , Proteínas de Unión al ARN/metabolismo , Animales , Proteínas CELF1/metabolismo , Línea Celular , Proteínas de Unión al ADN/metabolismo , Femenino , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Humanos , Hibridación Fluorescente in Situ , Masculino , Ratones , Proteínas Asociadas a Matriz Nuclear/metabolismo , Proteína de Unión al Tracto de Polipirimidina/metabolismo , Inactivación del Cromosoma X/genética
6.
Mol Cell ; 67(4): 594-607.e4, 2017 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-28735899

RESUMEN

Pervasive transcription initiates from cryptic promoters and is observed in eukaryotes ranging from yeast to mammals. The Set2-Rpd3 regulatory system prevents cryptic promoter function within expressed genes. However, conserved systems that control pervasive transcription within intergenic regions have not been well established. Here we show that Mot1, Ino80 chromatin remodeling complex (Ino80C), and NC2 co-localize on chromatin and coordinately suppress pervasive transcription in S. cerevisiae and murine embryonic stem cells (mESCs). In yeast, all three proteins bind subtelomeric heterochromatin through a Sir3-stimulated mechanism and to euchromatin via a TBP-stimulated mechanism. In mESCs, the proteins bind to active and poised TBP-bound promoters along with promoters of polycomb-silenced genes apparently lacking TBP. Depletion of Mot1, Ino80C, or NC2 by anchor away in yeast or RNAi in mESCs leads to near-identical transcriptome phenotypes, with new subtelomeric transcription in yeast, and greatly increased pervasive transcription in both yeast and mESCs.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Células Madre Embrionarias/enzimología , Fosfoproteínas/metabolismo , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética , ATPasas Asociadas con Actividades Celulares Diversas , Adenosina Trifosfatasas/genética , Sitios de Unión , Línea Celular , Proteínas de Unión al ADN , Eucromatina/genética , Eucromatina/metabolismo , Regulación Fúngica de la Expresión Génica , Silenciador del Gen , Genotipo , Heterocromatina/genética , Heterocromatina/metabolismo , Fenotipo , Fosfoproteínas/genética , Regiones Promotoras Genéticas , Unión Proteica , Interferencia de ARN , Proteínas Represoras/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Factores Asociados con la Proteína de Unión a TATA/genética , Proteína de Unión a TATA-Box/genética , Proteína de Unión a TATA-Box/metabolismo , Factor de Transcripción TFIID , Factores de Transcripción/genética , Transfección
7.
BMC Genomics ; 19(1): 956, 2018 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-30577748

RESUMEN

BACKGROUND: Both human and mouse fibroblasts can be reprogrammed to pluripotency with Oct4, Sox2, Klf4, and c-Myc (OSKM) transcription factors. While both systems generate pluripotency, human reprogramming takes considerably longer than mouse. RESULTS: To assess additional similarities and differences, we sought to compare the binding of the reprogramming factors between the two systems. In human fibroblasts, the OSK factors initially target many more closed chromatin sites compared to mouse. Despite this difference, the intra- and intergenic distribution of target sites, target genes, primary binding motifs, and combinatorial binding patterns between the reprogramming factors are largely shared. However, while many OSKM binding events in early mouse cell reprogramming occur in syntenic regions, only a limited number is conserved in human. CONCLUSIONS: Our findings suggest similar general effects of OSKM binding across these two species, even though the detailed regulatory networks have diverged significantly.


Asunto(s)
Reprogramación Celular/genética , Cromatina/metabolismo , Células Madre Pluripotentes Inducidas/citología , Factores de Transcripción/metabolismo , Animales , Células Cultivadas , Fibroblastos/citología , Humanos , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/metabolismo , Ratones , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Factores de Transcripción SOXB1/metabolismo , Especificidad de la Especie
8.
Nucleic Acids Res ; 40(10): e75, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22323518

RESUMEN

MicroRNAs (miRNA) are a class of small RNA molecules that regulate numerous critical cellular processes and bind to partially complementary sequences resulting in down-regulation of their target genes. Due to the incomplete homology of the miRNA to its target site identification of miRNA target genes is difficult and currently based on computational algorithms predicting large numbers of potential targets for a given miRNA. To enable the identification of biologically relevant miRNA targets, we describe a novel functional assay based on a 3'-UTR-enriched library and a positive/negative selection strategy. As proof of principle we have used mir-130a and its validated target MAFB to test this strategy. Identification of MAFB and five additional targets and their subsequent confirmation as mir-130a targets by western blot analysis and knockdown experiments validates this strategy for the functional identification of miRNA targets.


Asunto(s)
MicroARNs/metabolismo , Regiones no Traducidas 3' , Línea Celular , Clonación Molecular , Regulación hacia Abajo , Ganciclovir/farmacología , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Biblioteca de Genes , Humanos , MicroARNs/química , Transfección
9.
Res Sq ; 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38645113

RESUMEN

DNA methylation at cytosine bases of eukaryotic DNA (5-methylcytosine, 5mC) is a heritable epigenetic mark that can regulate gene expression in health and disease. Enzymes that metabolize 5mC have been well-characterized, yet the discovery of endogenously produced signaling molecules that regulate DNA methyl-modifying machinery have not been described. Herein, we report that the free radical signaling molecule nitric oxide (NO) can directly inhibit the Fe(II)/2-OG-dependent DNA demethylases ten-eleven translocation (TET) and human AlkB homolog 2 (ALKBH2). Physiologic NO concentrations reversibly inhibited TET and ALKBH2 demethylase activity by binding to the mononuclear non-heme iron atom which formed a dinitrosyliron complex (DNIC) preventing cosubstrates (2-OG and O2) from binding. In cancer cells treated with exogenous NO, or cells endogenously synthesizing NO, there was a global increase in 5mC and 5-hydroxymethylcytosine (5hmC) in DNA, the substrates for TET, that could not be attributed to increased DNA methyltransferase activity. 5mC was also elevated in NO-producing cell-line-derived mouse xenograft and patient-derived xenograft tumors. Genome-wide DNA methylome analysis of cells chronically treated with NO (10 days) demonstrated enrichment of 5mC and 5hmC at gene-regulatory loci which correlated to changes in the expression of NO-regulated tumor-associated genes. Regulation of DNA methylation is distinctly different from canonical NO signaling and represents a novel epigenetic role for NO.

10.
Nat Metab ; 6(7): 1310-1328, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38877143

RESUMEN

Non-small-cell lung cancer (NSCLC) with concurrent mutations in KRAS and the tumour suppressor LKB1 (KL NSCLC) is refractory to most therapies and has one of the worst predicted outcomes. Here we describe a KL-induced metabolic vulnerability associated with serine-glycine-one-carbon (SGOC) metabolism. Using RNA-seq and metabolomics data from human NSCLC, we uncovered that LKB1 loss enhanced SGOC metabolism via serine hydroxymethyltransferase (SHMT). LKB1 loss, in collaboration with KEAP1 loss, activated SHMT through inactivation of the salt-induced kinase (SIK)-NRF2 axis and satisfied the increased demand for one-carbon units necessary for antioxidant defence. Chemical and genetic SHMT suppression increased cellular sensitivity to oxidative stress and cell death. Further, the SHMT inhibitor enhanced the in vivo therapeutic efficacy of paclitaxel (first-line NSCLC therapy inducing oxidative stress) in KEAP1-mutant KL tumours. The data reveal how this highly aggressive molecular subtype of NSCLC fulfills their metabolic requirements and provides insight into therapeutic strategies.


Asunto(s)
Quinasas de la Proteína-Quinasa Activada por el AMP , Antioxidantes , Carcinoma de Pulmón de Células no Pequeñas , Glicina Hidroximetiltransferasa , Proteína 1 Asociada A ECH Tipo Kelch , Neoplasias Pulmonares , Mutación , Proteínas Serina-Treonina Quinasas , Proteínas Proto-Oncogénicas p21(ras) , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Glicina Hidroximetiltransferasa/genética , Glicina Hidroximetiltransferasa/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Antioxidantes/metabolismo , Animales , Estrés Oxidativo , Ratones , Línea Celular Tumoral , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética
11.
Mol Syst Biol ; 8: 573, 2012 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-22415777

RESUMEN

Regulating the transition of cells such as T lymphocytes from quiescence (G(0)) into an activated, proliferating state involves initiation of cellular programs resulting in entry into the cell cycle (proliferation), the growth cycle (blastogenesis, cell size) and effector (functional) activation. We show the first proteomic analysis of protein interaction networks activated during entry into the first cell cycle from G(0). We also provide proof of principle that blastogenesis and proliferation programs are separable in primary human T cells. We employed a proteomic profiling method to identify large-scale changes in chromatin/nuclear matrix-bound and unbound proteins in human T lymphocytes during the transition from G(0) into the first cell cycle and mapped them to form functionally annotated, dynamic protein interaction networks. Inhibiting the induction of two proteins involved in two of the most significantly upregulated cellular processes, ribosome biogenesis (eIF6) and hnRNA splicing (SF3B2/SF3B4), showed, respectively, that human T cells can enter the cell cycle without growing in size, or increase in size without entering the cell cycle.


Asunto(s)
Ciclo Celular/fisiología , Mapas de Interacción de Proteínas , Proteómica , Linfocitos T/metabolismo , Linfocitos T/fisiología , Ciclo Celular/genética , Núcleo Celular/metabolismo , Proliferación Celular , Cromatina/metabolismo , Análisis por Conglomerados , Proteínas de Unión al ADN/metabolismo , Factores Eucarióticos de Iniciación/metabolismo , Factores Eucarióticos de Iniciación/fisiología , Fase G1/fisiología , Humanos , Proteínas Asociadas a Matriz Nuclear/aislamiento & purificación , Proteínas Asociadas a Matriz Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Factores de Empalme de ARN , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/fisiología , Fase de Descanso del Ciclo Celular/fisiología
12.
Cell Metab ; 35(8): 1406-1423.e8, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37463576

RESUMEN

Lactate was implicated in the activation of hepatic stellate cells (HSCs). However, the mechanism by which lactate exerts its effect remains elusive. Using RNA-seq and CUT&Tag chromatin profiling, we found that induction of hexokinase 2 (HK2) expression in activated HSCs is required for induced gene expression by histone lactylation but not histone acetylation. Inhibiting histone lactylation by Hk2 deletion or pharmacological inhibition of lactate production diminishes HSC activation, whereas exogenous lactate but not acetate supplementation rescues the activation phenotype. Thus, lactate produced by activated HSCs determines the HSC fate via histone lactylation. We found that histone acetylation competes with histone lactylation, which could explain why class I HDAC (histone deacetylase) inhibitors impede HSC activation. Finally, HSC-specific or systemic deletion of HK2 inhibits HSC activation and liver fibrosis in vivo. Therefore, we provide evidence that HK2 may be an effective therapeutic target for liver fibrosis.


Asunto(s)
Hexoquinasa , Histonas , Humanos , Histonas/metabolismo , Hexoquinasa/genética , Hexoquinasa/metabolismo , Células Estrelladas Hepáticas/metabolismo , Cirrosis Hepática/metabolismo , Expresión Génica , Lactatos/farmacología
13.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 2920-2923, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-36085927

RESUMEN

Single-cell RNA sequencing is a powerful method that helps delineate the regulatory mechanisms shaping the diverse cellular populations. Heterogeneous cell populations consist of individual cells, and the expression of distinct sets of genes can differentiate one sub-population of cells from another, as they are responsible for the emergence of distinct cellular phenotypes. Of particular importance are cells at transition states that bridge these different cellular phenotypes. In this study, we develop a method to identify the cells at transition states bridging different cellular phenotypes. Our approach is based on persistent homology, which enabled us to identify the group of cells located on the boundaries between different sub-populations of cells. We applied this method to study the reprogramming of human fibroblasts toward induced pluripotent stem cells using single-cell time-course data. Even though only the data that is representative of the early stages of the reprogramming process are analyzed, we are able to uncover transient cells bridging different cell sub-populations. The most prominent group of transient cells are found to be enriched for NANOG, which is a known stem cell transcription factor that takes part in the maintenance of pluripotency and other stem cell marker genes. Overall, our method can identify cells in transient states bridging major cellular phenotypes, even though they are only a small fraction of the overall cell population. We also discuss how this approach can link the topology of the surface of cellular transcripts and bring order to the transition between cellular states and how it automatically uncovers the underlying time process.


Asunto(s)
Reprogramación Celular , Células Madre Pluripotentes Inducidas , Biomarcadores/metabolismo , Fibroblastos/metabolismo , Humanos
14.
Front Cell Dev Biol ; 10: 964119, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36003152

RESUMEN

The self-renewal and pluripotency of embryonic stem cells (ESCs) are conferred by networks including transcription factors and histone modifiers. The Auxin-inducible degron (AID) system can rapidly and reversibly degrade its target proteins and is becoming a powerful tool to explore novel function of key pluripotent and histone modifier genes in ESCs. However, the low biallelic tagging efficiency and a basal degradation level of the current AID systems deem it unsuitable to target key pluripotent genes with tightly controlled expression levels. Here, we develop a one-step strategy to successfully target and repress the endogenous pluripotent genes in mouse ESCs and replace their expression with AID fused transgenes. Therefore, this work provides an efficient way for employing the AID system to uncover novel function of essential pluripotent and chromatin modifier genes in ESCs.

15.
Curr Opin Pharmacol ; 67: 102312, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36335715

RESUMEN

Recent advances in our understanding of host immune and cancer cells interactions have made immunotherapy a prominent choice in cancer treatment. Despite such promise, cell-based immunotherapies remain inapplicable to many patients due to severe limitations in the availability and quality of immune cells isolated from donors. Reprogramming technologies that facilitate the engineering of cell types of interest, are emerging as a putative solution to such challenges. Here we focus on the recent progress being made in reprogramming technologies with respect to the immune system and their potential for clinical applications.


Asunto(s)
Inmunoterapia , Neoplasias , Humanos , Inmunoterapia/métodos , Neoplasias/terapia
16.
J Cell Physiol ; 226(4): 868-78, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20945378

RESUMEN

Induced pluripotent stem (iPS) cells can be generated from various embryonic and adult cell types upon expression of a set of few transcription factors, most commonly consisting of Oct4, Sox2, cMyc, and Klf4, following a strategy originally published by Takahashi and Yamanaka (Takahashi and Yamanaka, 2006, Cell 126: 663-676). Since iPS cells are molecularly and functionally similar to embryonic stem (ES) cells, they provide a source of patient-specific pluripotent cells for regenerative medicine and disease modeling, and therefore have generated enormous scientific and public interest. The generation of iPS cells also presents a powerful tool for dissecting mechanisms that stabilize the differentiated state and are required for the establishment of pluripotency. In this review, we discuss our current view of the molecular mechanisms underlying transcription factor-mediated reprogramming to induced pluripotency.


Asunto(s)
Reprogramación Celular/genética , Células Madre Pluripotentes Inducidas/metabolismo , Animales , Diferenciación Celular/genética , Epigénesis Genética , Humanos , Células Madre Pluripotentes Inducidas/citología , Cinética , Factor 4 Similar a Kruppel
17.
PLoS One ; 14(4): e0214368, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30946758

RESUMEN

Whole-genome bisulfite sequencing (WGBS) and reduced representation bisulfite sequencing (RRBS) are widely used for measuring DNA methylation levels on a genome-wide scale. Both methods have limitations: WGBS is expensive and prohibitive for most large-scale projects; RRBS only interrogates 6-12% of the CpGs in the human genome. Here, we introduce methylation-sensitive restriction enzyme bisulfite sequencing (MREBS) which has the reduced sequencing requirements of RRBS, but significantly expands the coverage of CpG sites in the genome. We built a multiple regression model that combines the two features of MREBS: the bisulfite conversion ratios of single cytosines (as in WGBS and RRBS) as well as the number of reads that cover each locus (as in MRE-seq). This combined approach allowed us to estimate differential methylation across 60% of the genome using read count data alone, and where counts were sufficiently high in both samples (about 1.5% of the genome), our estimates were significantly improved by the single CpG conversion information. We show that differential DNA methylation values based on MREBS data correlate well with those based on WGBS and RRBS. This newly developed technique combines the sequencing cost of RRBS and DNA methylation estimates on a portion of the genome similar to WGBS, making it ideal for large-scale projects of mammalian genomes.


Asunto(s)
Metilación de ADN/genética , Enzimas de Restricción del ADN/metabolismo , Análisis de Secuencia de ADN/métodos , Sulfitos/química , Animales , Línea Celular , Reprogramación Celular , Cromatina/metabolismo , Islas de CpG/genética , Genoma , Ratones
18.
Cell Stem Cell ; 24(1): 138-152.e8, 2019 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-30609396

RESUMEN

BAF complexes are composed of different subunits with varying functional and developmental roles, although many subunits have not been examined in depth. Here we show that the Baf45 subunit Dpf2 maintains pluripotency and ESC differentiation potential. Dpf2 co-occupies enhancers with Oct4, Sox2, p300, and the BAF subunit Brg1, and deleting Dpf2 perturbs ESC self-renewal, induces repression of Tbx3, and impairs mesendodermal differentiation without dramatically altering Brg1 localization. Mesendodermal differentiation can be rescued by restoring Tbx3 expression, whose distal enhancer is positively regulated by Dpf2-dependent H3K27ac maintenance and recruitment of pluripotency TFs and Brg1. In contrast, the PRC2 subunit Eed binds an intragenic Tbx3 enhancer to oppose Dpf2-dependent Tbx3 expression and mesendodermal differentiation. The PRC2 subunit Ezh2 likewise opposes Dpf2-dependent differentiation through a distinct mechanism involving Nanog repression. Together, these findings delineate distinct mechanistic roles for specific BAF and PRC2 subunits during ESC differentiation.


Asunto(s)
Diferenciación Celular , Proteínas de Unión al ADN/fisiología , Células Madre Embrionarias/citología , Complejo Represivo Polycomb 2/metabolismo , Proteínas de Dominio T Box/metabolismo , Factores de Transcripción/fisiología , Animales , Apoptosis , Ciclo Celular , Células Madre Embrionarias/metabolismo , Histonas/genética , Histonas/metabolismo , Ratones , Ratones Noqueados , Proteína Homeótica Nanog/genética , Proteína Homeótica Nanog/metabolismo , Complejo Represivo Polycomb 2/genética , Subunidades de Proteína , Proteínas de Dominio T Box/genética
19.
Stem Cell Reports ; 10(5): 1537-1550, 2018 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-29681539

RESUMEN

A dramatic difference in global DNA methylation between male and female cells characterizes mouse embryonic stem cells (ESCs), unlike somatic cells. We analyzed DNA methylation changes during reprogramming of male and female somatic cells and in resulting induced pluripotent stem cells (iPSCs). At an intermediate reprogramming stage, somatic and pluripotency enhancers are targeted for partial methylation and demethylation. Demethylation within pluripotency enhancers often occurs at ESC binding sites of pluripotency transcription factors. Late in reprogramming, global hypomethylation is induced in a female-specific manner. Genome-wide hypomethylation in female cells affects many genomic landmarks, including enhancers and imprint control regions, and accompanies the reactivation of the inactive X chromosome. The loss of one of the two X chromosomes in propagating female iPSCs is associated with genome-wide methylation gain. Collectively, our findings highlight the dynamic regulation of DNA methylation at enhancers during reprogramming and reveal that X chromosome dosage dictates global DNA methylation levels in iPSCs.


Asunto(s)
Reprogramación Celular/genética , Cromosomas de los Mamíferos/genética , Metilación de ADN/genética , Células Madre Pluripotentes Inducidas/metabolismo , Cromosoma X/genética , Animales , Sitios de Unión , Islas de CpG/genética , Células Madre Embrionarias/metabolismo , Elementos de Facilitación Genéticos/genética , Femenino , Genoma , Impresión Genómica , Células Madre Pluripotentes Inducidas/citología , Masculino , Ratones , Factores de Transcripción/metabolismo
20.
Cell Stem Cell ; 20(1): 87-101, 2017 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-27989770

RESUMEN

Naive human embryonic stem cells (hESCs) can be derived from primed hESCs or directly from blastocysts, but their X chromosome state has remained unresolved. Here, we show that the inactive X chromosome (Xi) of primed hESCs was reactivated in naive culture conditions. Like cells of the blastocyst, the resulting naive cells contained two active X chromosomes with XIST expression and chromosome-wide transcriptional dampening and initiated XIST-mediated X inactivation upon differentiation. Both establishment of and exit from the naive state (differentiation) happened via an XIST-negative XaXa intermediate. Together, these findings identify a cell culture system for functionally exploring the two X chromosome dosage compensation processes in early human development: X dampening and X inactivation. However, remaining differences between naive hESCs and embryonic cells related to mono-allelic XIST expression and non-random X inactivation highlight the need for further culture improvement. As the naive state resets Xi abnormalities seen in primed hESCs, it may provide cells better suited for downstream applications.


Asunto(s)
Cromosomas Humanos X/genética , Células Madre Pluripotentes/metabolismo , Inactivación del Cromosoma X/genética , Secuencia de Bases , Blastocisto/citología , Blastocisto/metabolismo , Diferenciación Celular/genética , Células Cultivadas , Metilación de ADN/genética , Femenino , Histonas/metabolismo , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/metabolismo , Humanos , Lisina/metabolismo , Metilación , Células Madre Pluripotentes/citología , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA