Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nucleic Acids Res ; 51(D1): D1075-D1085, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36318260

RESUMEN

Scalable technologies to sequence the transcriptomes and epigenomes of single cells are transforming our understanding of cell types and cell states. The Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative Cell Census Network (BICCN) is applying these technologies at unprecedented scale to map the cell types in the mammalian brain. In an effort to increase data FAIRness (Findable, Accessible, Interoperable, Reusable), the NIH has established repositories to make data generated by the BICCN and related BRAIN Initiative projects accessible to the broader research community. Here, we describe the Neuroscience Multi-Omic Archive (NeMO Archive; nemoarchive.org), which serves as the primary repository for genomics data from the BRAIN Initiative. Working closely with other BRAIN Initiative researchers, we have organized these data into a continually expanding, curated repository, which contains transcriptomic and epigenomic data from over 50 million brain cells, including single-cell genomic data from all of the major regions of the adult and prenatal human and mouse brains, as well as substantial single-cell genomic data from non-human primates. We make available several tools for accessing these data, including a searchable web portal, a cloud-computing interface for large-scale data processing (implemented on Terra, terra.bio), and a visualization and analysis platform, NeMO Analytics (nemoanalytics.org).


Asunto(s)
Encéfalo , Bases de Datos Genéticas , Epigenómica , Multiómica , Transcriptoma , Animales , Ratones , Genómica , Mamíferos , Primates , Encéfalo/citología , Encéfalo/metabolismo
2.
J Neurosci ; 40(49): 9401-9413, 2020 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-33127852

RESUMEN

During cochlear development, the Notch ligand JAGGED 1 (JAG1) plays an important role in the specification of the prosensory region, which gives rise to sound-sensing hair cells and neighboring supporting cells (SCs). While JAG1's expression is maintained in SCs through adulthood, the function of JAG1 in SC development is unknown. Here, we demonstrate that JAG1 is essential for the formation and maintenance of Hensen's cells, a highly specialized SC subtype located at the edge of the auditory epithelium. Using Sox2CreERT2/+::Jag1loxP/loxP mice of both genders, we show that Jag1 deletion at the onset of differentiation, at embryonic day 14.5, disrupted Hensen's cell formation. Similar loss of Hensen's cells was observed when Jag1 was deleted after Hensen's cell formation at postnatal day (P) 0/P1 and fate-mapping analysis revealed that in the absence of Jag1, some Hensen's cells die, but others convert into neighboring Claudius cells. In support of a role for JAG1 in cell survival, genes involved in mitochondrial function and protein synthesis were downregulated in the sensory epithelium of P0 cochlea lacking Jag1 Finally, using Fgfr3-iCreERT2 ::Jag1loxP/loxP mice to delete Jag1 at P0, we observed a similar loss of Hensen's cells and found that adult Jag1 mutant mice have hearing deficits at the low-frequency range.SIGNIFICANCE STATEMENT Hensen's cells play an essential role in the development and homeostasis of the cochlea. Defects in the biophysical or functional properties of Hensen's cells have been linked to auditory dysfunction and hearing loss. Despite their importance, surprisingly little is known about the molecular mechanisms that guide their development. Morphologic and fate-mapping analyses in our study revealed that, in the absence of the Notch ligand JAGGED1, Hensen's cells died or converted into Claudius cells, which are specialized epithelium-like cells outside the sensory epithelium. Confirming a link between JAGGED1 and cell survival, transcriptional profiling showed that JAGGED1 maintains genes critical for mitochondrial function and tissue homeostasis. Finally, auditory phenotyping revealed that JAGGED1's function in supporting cells is necessary for low-frequency hearing.


Asunto(s)
Cóclea/metabolismo , Proteína Jagged-1/metabolismo , Células Laberínticas de Soporte/fisiología , Animales , Supervivencia Celular , Cóclea/citología , Cóclea/crecimiento & desarrollo , Regulación hacia Abajo , Potenciales Evocados Auditivos del Tronco Encefálico , Femenino , Regulación del Desarrollo de la Expresión Génica , Inmunohistoquímica , Proteína Jagged-1/genética , Masculino , Ratones , Ratones Noqueados , Embarazo , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo
4.
Development ; 139(20): 3764-74, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22991441

RESUMEN

The formation of the salt-and-pepper mosaic of hair cells and supporting cells in the sensory epithelia of the inner ear is regulated by Notch signalling and lateral inhibition, but the dynamics of this process and precise mode of action of delta-like 1 (Dll1) in this context are unclear. Here, we transfected the chicken inner ear with a fluorescent reporter that includes elements of the mammalian Hes5 promoter to monitor Notch activity in the developing sensory patches. The Hes5 reporter was active in proliferating cells and supporting cells, and Dll1 expression was highest in prospective hair cells with low levels of Notch activity, which occasionally contacted more differentiated hair cells. To investigate Dll1 functions we used constructs in which Dll1 expression was either constitutive, regulated by the Hes5 promoter, or induced by doxycycline. In support of the standard lateral inhibition model, both continuous and Hes5-regulated expression of Dll1 promoted hair cell differentiation cell-autonomously (in cis) and inhibited hair cell formation in trans. However, some hair cells formed despite contacting Dll1-overexpressing cells, suggesting that some progenitor cells are insensitive to lateral inhibition. This is not due to the cis-inhibition of Notch activity by Dll1 itself, as induction of Dll1 did not cell-autonomously reduce the activity of the Hes5 reporter in progenitor and supporting cells. Altogether, our results show that Dll1 functions primarily in trans to regulate hair cell production but also that additional mechanisms operate downstream of lateral inhibition to eliminate patterning errors in the sensory epithelia of the inner ear.


Asunto(s)
Oído Interno/embriología , Oído Interno/metabolismo , Células Ciliadas Auditivas Internas/citología , Células Ciliadas Auditivas Internas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Animales , Diferenciación Celular , Proliferación Celular , Embrión de Pollo , Doxiciclina/farmacología , Regulación del Desarrollo de la Expresión Génica , Genes Reporteros , Receptores Notch/metabolismo , Transducción de Señal
5.
bioRxiv ; 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38948763

RESUMEN

In this paper, we introduce a new, open-source software developed in Python for analyzing Auditory Brainstem Response (ABR) waveforms. ABRs are a far-field recording of synchronous neural activity generated by the auditory fibers in the ear in response to sound, and used to study acoustic neural information traveling along the ascending auditory pathway. Common ABR data analysis practices are subject to human interpretation and are labor-intensive, requiring manual annotations and visual estimation of hearing thresholds. The proposed new Auditory Brainstem Response Analyzer (ABRA) software is designed to facilitate the analysis of ABRs by supporting batch data import/export, waveform visualization, and statistical analysis. Techniques implemented in this software include algorithmic peak finding, threshold estimation, latency estimation, time warping for curve alignment, and 3D plotting of ABR waveforms over stimulus frequencies and decibels. The excellent performance on a large dataset of ABR collected from three labs in the field of hearing research that use different experimental recording settings illustrates the efficacy, flexibility, and wide utility of ABRA.

6.
Aging Biol ; 12024.
Artículo en Inglés | MEDLINE | ID: mdl-38500536

RESUMEN

There is considerable interest in whether sensory deficiency is associated with the development of Alzheimer's disease (AD). Notably, the relationship between hearing impairment and AD is of high relevance but still poorly understood. In this study, we found early-onset hearing loss in two AD mouse models, 3xTgAD and 3xTgAD/Polß+/-. The 3xTgAD/Polß+/- mouse is DNA repair deficient and has more humanized AD features than the 3xTgAD. Both AD mouse models showed increased auditory brainstem response (ABR) thresholds between 16 and 32 kHz at 4 weeks of age, much earlier than any AD cognitive and behavioral changes. The ABR thresholds were significantly higher in 3xTgAD/Polß+/- mice than in 3xTgAD mice at 16 kHz, and distortion product otoacoustic emission signals were reduced, indicating that DNA damage may be a factor underlying early hearing impairment in AD. Poly ADP-ribosylation and protein expression levels of DNA damage markers increased significantly in the cochlea of the AD mice but not in the adjacent auditory cortex. Phosphoglycerate mutase 2 levels and the number of synaptic ribbons in the presynaptic zones of inner hair cells were decreased in the cochlea of the AD mice. Furthermore, the activity of sirtuin 3 was downregulated in the cochlea of these mice, indicative of impaired mitochondrial function. Taken together, these findings provide new insights into potential mechanisms for hearing dysfunction in AD and suggest that DNA damage in the cochlea might contribute to the development of early hearing loss in AD.

7.
Elife ; 62017 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-29199954

RESUMEN

The mechanisms of formation of the distinct sensory organs of the inner ear and the non-sensory domains that separate them are still unclear. Here, we show that several sensory patches arise by progressive segregation from a common prosensory domain in the embryonic chicken and mouse otocyst. This process is regulated by mutually antagonistic signals: Notch signalling and Lmx1a. Notch-mediated lateral induction promotes prosensory fate. Some of the early Notch-active cells, however, are normally diverted from this fate and increasing lateral induction produces misshapen or fused sensory organs in the chick. Conversely Lmx1a (or cLmx1b in the chick) allows sensory organ segregation by antagonizing lateral induction and promoting commitment to the non-sensory fate. Our findings highlight the dynamic nature of sensory patch formation and the labile character of the sensory-competent progenitors, which could have facilitated the emergence of new inner ear organs and their functional diversification in the course of evolution.


Asunto(s)
Oído Interno/anatomía & histología , Regulación del Desarrollo de la Expresión Génica , Organogénesis , Receptores Notch/metabolismo , Transducción de Señal , Animales , Pollos , Oído Interno/embriología , Oído Interno/metabolismo , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo , Proteínas con Homeodominio LIM/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Receptores Notch/genética
8.
Sci Rep ; 6: 19484, 2016 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-26786414

RESUMEN

The auditory sensory epithelium, composed of mechano-sensory hair cells (HCs) and highly specialized glial-like supporting cells (SCs), is critical for our ability to detect sound. SCs provide structural and functional support to HCs and play an essential role in cochlear development, homeostasis and repair. Despite their importance, however, surprisingly little is known about the molecular mechanisms guiding SC differentiation. Here, we provide evidence that in addition to its well-characterized inhibitory function, canonical Notch signaling plays a positive, instructive role in the differentiation of SCs. Using γ-secretase inhibitor DAPT to acutely block canonical Notch signaling, we identified a cohort of Notch-regulated SC-specific genes, with diverse functions in cell signaling, cell differentiation, neuronal innervation and synaptogenesis. We validated the newly identified Notch-regulated genes in vivo using genetic gain (Emx2(Cre/+); Rosa26(N1ICD/+)) and loss-of-function approaches (Emx2(Cre/+); Rosa26(DnMAML1/+)). Furthermore, we demonstrate that Notch over-activation in the differentiating murine cochlea (Emx2(Cre/+); Rosa26(N1ICD/+)) actively promotes a SC-specific gene expression program. Finally, we show that outer SCs -so called Deiters' cells are selectively lost by prolonged reduction (Emx2(Cre/+); Rosa26(DnMAML1/+/+)) or abolishment of canonical Notch signaling (Fgfr3-iCreER; Rbpj(-/Δ)), indicating a critical role for Notch signaling in Deiters' cell development.


Asunto(s)
Células Laberínticas de Soporte/metabolismo , Receptores Notch/metabolismo , Transducción de Señal , Animales , Recuento de Células , Muerte Celular , Diferenciación Celular/genética , Cóclea/citología , Cóclea/embriología , Cóclea/metabolismo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Células Laberínticas de Soporte/citología , Ratones , Ratones Transgénicos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Especificidad de Órganos/genética , Fenotipo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
Methods Mol Biol ; 916: 127-39, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22914937

RESUMEN

The vertebrate inner ear is composed of several specialized epithelia containing mechanosensory "hair" cells, sensitive to sound and head movements. In mammals, the loss of hair cells for example during aging or after noise trauma is irreversible and results in permanent sensory deficits. By contrast, avian, fish, and amphibians can efficiently regenerate lost hair cells following trauma. The chicken inner ear is a classic model system to investigate the cellular and molecular mechanisms of inner ear development and regeneration, yet it suffered until recently from a relative lack of flexible tools for genetic studies. With the introduction of in ovo electroporation and of Tol2 transposon vectors for gene transfer in avian cells, the field of experimental possibilities has now expanded significantly in this model. Here we provide a general protocol for in ovo electroporation of the chicken otic placode and illustrate how this approach, combined with Tol2 vectors, can be used to drive long-term and inducible gene expression in the embryonic chicken inner ear. This method will be particularly useful to investigate the function of candidate genes regulating progenitor cell behavior and sensory cell differentiation in the inner ear.


Asunto(s)
Pollos , Elementos Transponibles de ADN/genética , Oído Interno/embriología , Oído Interno/fisiología , Electroporación/métodos , Regeneración/genética , Transfección/métodos , Animales , Oído Interno/citología , Oído Interno/metabolismo , Ectodermo/embriología , Ectodermo/metabolismo , Vectores Genéticos/genética , Transfección/instrumentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA