Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Environ Manage ; 367: 121939, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39067343

RESUMEN

The recently discovered complete ammonia oxidation (comammox Nitrospira) containing clade A and clade B has further complemented our understanding of nitrification process. Nevertheless, understanding the community feature of comammox Nitrospira clades A and B and their relative contribution to nitrification in paddy rhizosphere are still in its infancy. In this study, we assessed the community diversity and structure of comammox Nitrospira clades A and B in paddy rhizosphere and bulk soils under thirty years of different fertilization strategies, i.e., non-fertilization control (CK), chemical fertilizers application (NPK), and NPK plus swine manure (NPKM), respectively. NPKM significantly increased the a-diversity (Chao1 and Shannon indices) of comammox Nitrospira clade A and altered the community structure (P < 0.05) but had little effect on clade B. A two-way analysis of variance (ANOVA) showed that the effect of long-term fertilization on soil comammox Nitrospira community and nitrification potential rate (PNR) was much greater than that of rhizosphere. Compared with NPK, soil PNR was greatly increased by 51.0% under the NPKM treatment in the rhizosphere (P < 0.05). Phylogenetic analysis showed that NPKM improved the relative abundances of sub-clade A.2.1 and sub-clade A.3.2 of the comammox clade A community, with an average increase of 212.2 and 210.4% in both rhizosphere and bulk soils relative to the NPK treatment. Soil organic matter, NH4+-N, and pH were significant soil drivers of comammox Nitrospira clades A and B community. Furthermore, linear regression and structural equation modeling clearly showed that comammox Nitrospira clade A a-diversity were significantly associated with soil PNR (P < 0.05). Our results suggest (i) that comammox Nitrospira clade A are sensitive to the organic fertilization; and (ii) that comammox Nitrospira clade A contribute more to nitrification than clade B under the long-term organic fertilized paddy soil.


Asunto(s)
Fertilizantes , Nitrificación , Rizosfera , Microbiología del Suelo , Suelo , Fertilizantes/análisis , China , Suelo/química , Filogenia , Amoníaco/metabolismo , Oryza
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA