Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 366
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Respir Res ; 25(1): 193, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702733

RESUMEN

BACKGROUND: Influenza A virus (IAV) infection is a significant risk factor for respiratory diseases, but the host defense mechanisms against IAV remain to be defined. Immune regulators such as surfactant protein A (SP-A) and Toll-interacting protein (Tollip) have been shown to be involved in IAV infection, but whether SP-A and Tollip cooperate in more effective host defense against IAV infection has not been investigated. METHODS: Wild-type (WT), Tollip knockout (KO), SP-A KO, and Tollip/SP-A double KO (dKO) mice were infected with IAV for four days. Lung macrophages were isolated for bulk RNA sequencing. Precision-cut lung slices (PCLS) from WT and dKO mice were pre-treated with SP-A and then infected with IAV for 48 h. RESULTS: Viral load was significantly increased in bronchoalveolar lavage (BAL) fluid of dKO mice compared to all other strains of mice. dKO mice had significantly less recruitment of neutrophils into the lung compared to Tollip KO mice. SP-A treatment of PCLS enhanced expression of TNF and reduced viral load in dKO mouse lung tissue. Pathway analysis of bulk RNA sequencing data suggests that macrophages from IAV-infected dKO mice reduced expression of genes involved in neutrophil recruitment, IL-17 signaling, and Toll-like receptor signaling. CONCLUSIONS: Our data suggests that both Tollip and SP-A are essential for the lung to exert more effective innate defense against IAV infection.


Asunto(s)
Virus de la Influenza A , Ratones Endogámicos C57BL , Ratones Noqueados , Infecciones por Orthomyxoviridae , Proteína A Asociada a Surfactante Pulmonar , Animales , Proteína A Asociada a Surfactante Pulmonar/metabolismo , Proteína A Asociada a Surfactante Pulmonar/genética , Ratones , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/virología , Infecciones por Orthomyxoviridae/metabolismo , Virus de la Influenza A/inmunología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Pulmón/inmunología , Pulmón/metabolismo , Pulmón/virología
2.
Cell Commun Signal ; 22(1): 15, 2024 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-38183060

RESUMEN

BACKGROUND: The dynamic interaction between cancer cells and tumour-associated macrophages (TAMs) in the hypoxic tumour microenvironment (TME) is an active barrier to the effector arm of the antitumour immune response. Cancer-secreted exosomes are emerging mediators of this cancer-stromal cross-talk in the TME; however, the mechanisms underlying this interaction remain unclear. METHODS: Exosomes were isolated with ExoQuick exosome precipitation solution. The polarizing effect of TAMs was evaluated by flow cytometry, western blot analysis, immunofluorescence staining and in vitro phagocytosis assays. Clinical cervical cancer specimens and an in vivo xenograft model were also employed. RESULTS: Our previous study showed that hypoxia increased the expression of ZEB1 in cervical squamous cell carcinoma (CSCC) cells, which resulted in increased infiltration of TAMs. Here, we found that hypoxia-induced ZEB1 expression is closely correlated with CD47-SIRPα axis activity in CSCC, which enables cancer cells to evade phagocytosis by macrophages and promotes tumour progression. ZEB1 was found to directly activate the transcription of the CD47 gene in hypoxic CSCC cells. We further showed that endogenous ZEB1 was characteristically enriched in hypoxic CSCC cell-derived exosomes and transferred into macrophages via these exosomes to promote SIRPα+ TAM polarization. Intriguingly, exosomal ZEB1 retained transcriptional activity and reprogrammed SIRPα+ TAMs via activation of the STAT3 signalling pathway in vitro and in vivo. STAT3 inhibition reduced the polarizing effect induced by exosomal ZEB1. Knockdown of ZEB1 increased the phagocytosis of CSCC cells by macrophages via decreasing CD47 and SIRPα expression. CONCLUSIONS: Our results suggest that hypoxia-induced ZEB1 promotes immune evasion in CSCC by strengthening the CD47-SIRPα axis. ZEB1-targeted therapy in combination with CD47-SIRPα checkpoint immunotherapy may improve the outcomes of CSCC patients in part by disinhibiting innate immunity.


Asunto(s)
Carcinoma de Células Escamosas , Escape del Tumor , Neoplasias del Cuello Uterino , Homeobox 1 de Unión a la E-Box con Dedos de Zinc , Femenino , Humanos , Antígeno CD47 , Exosomas , Evasión Inmune , Microambiente Tumoral , Neoplasias del Cuello Uterino/metabolismo , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo
3.
MMWR Morb Mortal Wkly Rep ; 73(23): 529-533, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38870469

RESUMEN

High-quality vaccine-preventable disease (VPD) surveillance data are critical for timely outbreak detection and response. In 2019, the World Health Organization (WHO) African Regional Office (AFRO) began transitioning from Epi Info, a free, CDC-developed statistical software package with limited capability to integrate with other information systems, affecting reporting timeliness and data use, to District Health Information Software 2 (DHIS2). DHIS2 is a free and open-source software platform for electronic aggregate Integrated Disease Surveillance and Response (IDSR) and case-based surveillance reporting. A national-level reporting system, which provided countries with the option to adopt this new system, was introduced. Regionally, the Epi Info database will be replaced with a DHIS2 regional data platform. This report describes the phased implementation from 2019 to the present. Phase one (2019-2021) involved developing IDSR aggregate and case-based surveillance packages, including pilots in the countries of Mali, Rwanda, and Togo. Phase two (2022) expanded national-level implementation to 27 countries and established the WHO AFRO DHIS2 regional data platform. Phase three (from 2023 to the present) activities have been building local capacity and support for country reporting to the regional platform. By February 2024, eight of 47 AFRO countries had adopted both the aggregate IDSR and case-based surveillance packages, and two had successfully transferred VPD surveillance data to the AFRO regional platform. Challenges included limited human and financial resources, the need to establish data-sharing and governance agreements, technical support for data transfer, and building local capacity to report to the regional platform. Despite these challenges, the transition to DHIS2 will support efficient data transmission to strengthen VPD detection, response, and public health emergencies through improved system integration and interoperability.


Asunto(s)
Vigilancia de la Población , Programas Informáticos , Enfermedades Prevenibles por Vacunación , Organización Mundial de la Salud , Humanos , África/epidemiología , Enfermedades Prevenibles por Vacunación/prevención & control , Enfermedades Prevenibles por Vacunación/epidemiología
4.
Inorg Chem ; 63(9): 4185-4195, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38364251

RESUMEN

Posttreatment of pristine metal-organic frameworks (MOFs) with suitable vapor may be an effective way to regulate their structures and properties but has been less explored. Herein, we report an interesting example in which a crystalline nonporous Eu(III)-MOF was transferred to a porous amorphous MOF (aMOF) via iodine vapor adsorption-desorption posttreatment, and the resulting aMOF showed improved turn-on sensing properties with respect to Ag+ ions. The crystalline Eu-MOF, namely, Eu-IPDA, was assembled from Eu(III) and 4,4'-{4-[4-(1H-imidazol-1-yl)phenyl]pyridine-2,6-diyl}dibenzoic acid (H2IPDA) and exhibited a two-dimensional (2D) coordination network based on one-dimensional secondary building blocks. The close packing of the 2D networks gives rise to a three-dimensional supramolecular framework without any significant pores. Interestingly, the nonporous Eu-IPDA could absorb iodine molecules when Eu-IPDA crystals were placed in iodine vapor at 85 °C, and the adsorption capacity was 1.90 g/g, which is comparable to those of many MOFs with large BET surfaces. The adsorption of iodine is attributed to the strong interactions among the iodine molecule, the carboxy group, and the N-containing group and leads to the amorphization of the framework. After immersion of the iodine-loaded Eu-IPDA in EtOH, approximately 89.7% of the iodine was removed, resulting in a porous amorphous MOF, denoted as a-Eu-IPDA. In addition, the remaining iodine in the a-Eu-IPDA framework causes strong luminescent quenching in the fluorescence emission region of the Eu(III) center when compared with that in Eu-IPDA. The luminescence intensity of a-Eu-IPDA in water suspensions was significantly enhanced when Ag+ ions were added, with a detection limit of 4.76 × 10-6 M, which is 1000 times that of pristine Eu-IPDA. It also showed strong anti-interference ability over many common competitive metal ions and has the potential to sense Ag+ in natural water bodies and traditional Chinese medicine preparations. A mechanistic study showed that the interactions between Ag+ and the absorbed iodine, the carboxylate group, and the N atoms all contribute to the sensing performance of a-Eu-IPDA.

5.
Int J Mol Sci ; 25(5)2024 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-38474191

RESUMEN

Mitochondrial dysfunction and metabolic reprogramming have been extensively studied in many disorders ranging from cardiovascular to neurodegenerative disease. Obesity has previously been associated with mitochondrial fragmentation, dysregulated glycolysis, and oxidative phosphorylation, as well as increased reactive oxygen species production. Current treatments focus on reducing cellular stress to restore homeostasis through the use of antioxidants or alterations of mitochondrial dynamics. This review focuses on the role of mitochondrial dysfunction in obesity particularly for those suffering from asthma and examines mitochondrial transfer from mesenchymal stem cells to restore function as a potential therapy. Mitochondrial targeted therapy to restore healthy metabolism may provide a unique approach to alleviate dysregulation in individuals with this unique endotype.


Asunto(s)
Asma , Enfermedades Mitocondriales , Enfermedades Neurodegenerativas , Humanos , Estrés Oxidativo/fisiología , Reprogramación Metabólica , Obesidad , Enfermedades Mitocondriales/metabolismo , Especies Reactivas de Oxígeno/metabolismo
6.
J Sci Food Agric ; 104(3): 1431-1440, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37800391

RESUMEN

BACKGROUND: Pea protein, as a by-product of peas (Pisum sativum L.), is rich in a variety of essential amino acids that can meet the body's protein needs and is a valuable source of protein. Since the function of pea protein is closely related to its structure, pea protein has been subjected to different modifications in recent years to improve its application in food and to develop new products. RESULTS: The effects of sonication frequency (primary and secondary time) on pea protein isolate's (PPI's) structural and functional properties were investigated. Sodium dodecyl sulfate polyacrylamide gel electrophoresis demonstrated that different sonication frequencies at the same power (600 W) treatment had no effect on PPI's molecular weight. Fourier-transform infrared spectroscopy revealed that treatment at different sonication frequencies caused secondary structural changes in PPI. The particle size distribution, foaming, stability, surface hydrophobicity, emulsification, and oxidation resistance of PPI were improved after primary and secondary sonication, but secondary sonication was not more effective than primary sonication for an extended period of time. CONCLUSION: Overall, ultrasound is able to improve the structural and functional properties of pea proteins within a suitable range. It provides a theoretical basis for elucidating the modification of the structure and function of plant proteins by ultrasound and lays the foundation for the development of plant proteins in food applications as well as development. © 2023 Society of Chemical Industry.


Asunto(s)
Proteínas de Guisantes , Ultrasonido , Proteínas de Plantas , Interacciones Hidrofóbicas e Hidrofílicas
7.
Anal Chem ; 95(8): 4104-4112, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36688529

RESUMEN

Significant progress has been made in nanomaterial-modified electrodes for highly efficient electroanalysis of arsenic(III) (As(III)). However, the modifiers prepared using some physical methods may easily fall off, and active sites are not uniform, causing the potential instability of the modified electrode. This work first reports a promising practical strategy without any modifiers via utilizing only soluble Fe3+ as a trigger to detect trace-level As(III) in natural water. This method reaches an actual detection limit of 1 ppb on bare glassy carbon electrodes and a sensitivity of 0.296 µA ppb-1 with excellent stability. Kinetic simulations and experimental evidence confirm the codeposition mechanism that Fe3+ is preferentially deposited as Fe0, which are active sites to adsorb As(III) and H+ on the electrode surface. This facilitates the formation of AsH3, which could further react with Fe2+ to produce more As0 and Fe0. Meanwhile, the produced Fe0 can also accelerate the efficient enrichment of As0. Remarkably, the proposed sensing mechanism is a general rule for the electroanalysis of As(III) that is triggered by iron group ions (Fe2+, Fe3+, Co2+, and Ni2+). The interference analysis of coexisting ions (Cu2+, Zn2+, Al3+, Hg2+, Cd2+, Pb2+, SO42-, NO3-, Cl-, and F-) indicates that only Cu2+, Pb2+, and F- showed inhibitory effects on As(III) due to the competition of active sites. Surprisingly, adding iron power effectively eliminates the interference of Cu2+ in natural water, achieving a higher sensitivity for 1-15 ppb As(III) (0.487 µA ppb-1). This study provides effective solutions to overcome the potential instability of modified electrodes and offers a practical sensing platform for analyzing other heavy-metal anions.

8.
Environ Sci Technol ; 57(11): 4481-4491, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36881938

RESUMEN

The effects of sex and pregnancy on the bioaccumulation and tissue distribution of legacy and emerging per- and polyfluoroalkyl substances (PFASs) in Chinese water snakes were investigated. The bioaccumulation factor of PFASs showed a positive correlation with their protein-water partition coefficients (log KPW), and steric hindrance effects were observed when the molecular volume was > 357 Å3. PFAS levels in females were significantly lower than those in males. The chemical composition of pregnant females was significantly different from that of non-pregnant females and males. The maternal transfer efficiencies of perfluorooctane sulfonic acid were higher than those of other PFASs, and a positive correlation between the maternal transfer potential and log KPW was observed for other PFASs. Tissues with high phospholipid content exhibited higher concentrations of ∑PFASs. Numerous physiological changes occurred in maternal organ systems during pregnancy, leading to the re-distribution of chemicals among different tissues. The change in tissue distribution of PFASs that are easily and not-so-easily maternally transferred was in the opposite direction. The extent of compound transfer from the liver to the egg determined tissue re-distribution during pregnancy.


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Contaminantes Químicos del Agua , Femenino , Embarazo , Humanos , Bioacumulación , Distribución Tisular , Contaminantes Químicos del Agua/análisis , Agua , Fluorocarburos/análisis , China
9.
Arch Phys Med Rehabil ; 104(3): 490-501, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36265531

RESUMEN

OBJECTIVE: To determine whether virtual reality-assisted therapy (VRAT) significantly improves the treatment of peripheral or central vestibular disorders when compared with conventional vestibular physical therapy (CVPT) alone. Indicators of vestibular symptoms are used to determine this. DATA SOURCES: Two reviewers independently searched PubMed, EMBASE, ClinicalTrials.gov, Web of Science, and the Cochrane Collaboration database from January 2010 to January 2022 for studies reporting on VRAT in vestibular disorders. STUDY SELECTION: Randomized controlled trials (RCTs) were included that mainly focused on the following measures: the Dizziness Handicap Inventory (DHI), Simulator Sickness Questionnaire, visual analog scale, and balance measures such as the Activities-specific Balance Confidence Scale (ABC), timed Up and Go test, sensory organization test, and center of pressure. The primary outcome was assessment of symptomatic changes before and after VRAT. DATA EXTRACTION: Two authors independently conducted the literature search and selection. After screening, meta-analysis was performed on the RCTs using RevMan 5.3 software. DATA SYNTHESIS: The results showed that VRAT produced significantly greater improvement than CVPT alone in scores of DHI-Total (standardized mean difference [SMD]: -7.09, 95% confidence interval [CI]: [-12.17, -2.00], P=.006), DHI-Functional (SMD=-3.66, 95% CI: [-6.34, -0.98], P=.007), DHI-Physical (SMD=-3.14, 95% CI: [-5.46, -0.83], P=.008), and DHI-Emotional (SMD=-3.10, 95% CI: [-5.13, -1.08], P=.003). ABC scores did not show improvement (SMD: 0.58, 95% CI: [-3.69, 4.85], P=.79). Subgroup analysis showed that DHI-Total between-group differences were insignificant for central vestibular disorders (SMD=-1.47, 95% CI: [-8.71, -5.78], P=.69), although peripheral disorders showed significant improvements (SMD=-9.58, 95% CI: [-13.92, -5.25], P<.0001). However, the included studies showed high heterogeneity (I2>75%). CONCLUSIONS: VRAT may offer additional benefits for rehabilitation from vestibular diseases, especially peripheral disorders, when compared with CVPT alone. However, because of high heterogeneity and limited data, additional studies with a larger sample size and more sensitive and specific measurements are required to conclusively determine the evidence-based utility of virtual reality.


Asunto(s)
Enfermedades Vestibulares , Terapia de Exposición Mediante Realidad Virtual , Humanos , Mareo , Emociones , Examen Físico , Enfermedades Vestibulares/rehabilitación , Realidad Virtual
10.
Int J Mol Sci ; 24(2)2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36674451

RESUMEN

Mitochondrial dysfunction is common in various pathological conditions including obesity. Release of mitochondrial DNA (mtDNA) during mitochondrial dysfunction has been shown to play a role in driving the pro-inflammatory response in leukocytes including macrophages. However, the mechanisms by which mtDNA induces leukocyte inflammatory responses in vivo are still unclear. Moreover, how mtDNA is released in an obese setting has not been well understood. By using a mouse model of TLR9 deficiency in myeloid cells (e.g., macrophages), we found that TLR9 signaling in myeloid cells was critical to mtDNA-mediated pro-inflammatory responses such as neutrophil influx and chemokine production. mtDNA release by lung macrophages was enhanced by exposure to palmitic acid (PA), a major saturated fatty acid related to obesity. Moreover, TLR9 contributed to PA-mediated mtDNA release and inflammatory responses. Pathway analysis of RNA-sequencing data in TLR9-sufficient lung macrophages revealed the up-regulation of axon guidance molecule genes and down-regulation of metabolic pathway genes by PA. However, in TLR9-deficient lung macrophages, PA down-regulated axon guidance molecule genes, but up-regulated metabolic pathway genes. Our results suggest that mtDNA utilizes TLR9 signaling in leukocytes to promote lung inflammatory responses in hosts with increased PA. Moreover, TLR9 signaling is involved in the regulation of axon guidance and metabolic pathways in lung macrophages exposed to PA.


Asunto(s)
ADN Mitocondrial , Neumonía , Humanos , ADN Mitocondrial/metabolismo , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/metabolismo , Neumonía/genética , Neumonía/metabolismo , Neutrófilos/metabolismo , Obesidad/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Inflamación/genética , Inflamación/metabolismo
11.
Int J Mol Sci ; 24(5)2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36901724

RESUMEN

The use of electronic nicotine dispensing systems (ENDS), also known as electronic cigarettes (ECs), is common among adolescents and young adults with limited knowledge about the detrimental effects on lung health such as respiratory viral infections and underlying mechanisms. Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), a protein of the TNF family involved in cell apoptosis, is upregulated in COPD patients and during influenza A virus (IAV) infections, but its role in viral infection during EC exposures remains unclear. This study was aimed to investigate the effect of ECs on viral infection and TRAIL release in a human lung precision-cut lung slices (PCLS) model, and the role of TRAIL in regulating IAV infection. PCLS prepared from lungs of nonsmoker healthy human donors were exposed to EC juice (E-juice) and IAV for up to 3 days during which viral load, TRAIL, lactate dehydrogenase (LDH), and TNF-α in the tissue and supernatants were determined. TRAIL neutralizing antibody and recombinant TRAIL were utilized to determine the contribution of TRAIL to viral infection during EC exposures. E-juice increased viral load, TRAIL, TNF-α release and cytotoxicity in IAV-infected PCLS. TRAIL neutralizing antibody increased tissue viral load but reduced viral release into supernatants. Conversely, recombinant TRAIL decreased tissue viral load but increased viral release into supernatants. Further, recombinant TRAIL enhanced the expression of interferon-ß and interferon-λ induced by E-juice exposure in IAV-infected PCLS. Our results suggest that EC exposure in human distal lungs amplifies viral infection and TRAIL release, and that TRAIL may serve as a mechanism to regulate viral infection. Appropriate levels of TRAIL may be important to control IAV infection in EC users.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Virus de la Influenza A , Gripe Humana , Adolescente , Humanos , Adulto Joven , Anticuerpos Neutralizantes/metabolismo , Virus de la Influenza A/fisiología , Pulmón/patología , Factor de Necrosis Tumoral alfa/metabolismo
12.
Beijing Da Xue Xue Bao Yi Xue Ban ; 55(5): 818-824, 2023 Oct 18.
Artículo en Zh | MEDLINE | ID: mdl-37807734

RESUMEN

OBJECTIVE: Constructing a predictive model for urinary incontinence after laparoscopic radical prostatectomy (LRP) based on prostatic gland related MRI parameters. METHODS: In this study, 202 cases were included. All the patients were diagnosed with prostate cancer by prostate biopsy and underwent LRP surgery in Peking University Third Hospital. The preoperative MRI examination of all the patients was completed within 1 week before the prostate biopsy. Prostatic gland related parameters included prostate length, width, height, prostatic volume, intravesical prostatic protrusion length (IPPL), prostate apex shape, etc. From the first month after the operation, the recovery of urinary continence was followed up every month, and the recovery of urinary continence was based on the need not to use the urine pad all day long. Logistic multivariate regression analysis was used to analyze the influence of early postoperative recovery of urinary continence. Risk factors were used to draw the receiver operator characteristic (ROC) curves of each model to predict the recovery of postoperative urinary continence, and the difference of the area under the curve (AUC) was compared by DeLong test, and the clinical net benefit of the model was evaluated by decision curve analysis (DCA). RESULTS: The average age of 202 patients was 69.0 (64.0, 75.5) years, the average prostate specific antigen (PSA) before puncture was 12.12 (7.36, 20.06) µg/L, and the Gleason score < 7 points and ≥ 7 points were 73 cases (36.2%) and 129 cases (63.9%) respectively, with 100 cases (49.5%) at T1/T2 clinical stage, and 102 cases (50.5%) at T3 stage. The prostatic volume measured by preoperative MRI was 35.4 (26.2, 51.1) mL, the ratio of the height to the width was 0.91 (0.77, 1.07), the membranous urethral length (MUL) was 15 (11, 16) mm, and the IPPL was 2 (0, 6) mm. The prostatic apex A-D subtypes were 67 cases (33.2%), 80 cases (39.6%), 24 cases (11.9%) and 31 cases (15.3%), respectively. The training set and validation set were 141 cases and 61 cases, respectively. The operations of all the patients were successfully completed, and the urinary continence rate was 59.4% (120/202) in the 3 months follow-up. The results of multivariate analysis of the training set showed that the MUL (P < 0.001), IPPL (P=0.017) and clinical stage (P=0.022) were independent risk factors for urinary incontinence in the early postoperative period (3 months). The nomogram and clinical decision curve were made according to the results of multivariate analysis. The AUC value of the training set was 0.885 (0.826, 0.944), and the AUC value of the validation set was 0.854 (0.757, 0.950). In the verification set, the Hosmer-Lemeshow goodness-of-fit test was performed on the model, and the Chi-square value was 5.426 (P=0.711). CONCLUSION: Preoperative MUL, IPPL, and clinical stage are indepen-dent risk factors for incontinence after LRP. The nomogram developed based on the relevant parameters of MRI glands can effectively predict the recovery of early urinary continence after LRP. The results of this study require further large-scale clinical research to confirm.


Asunto(s)
Laparoscopía , Neoplasias de la Próstata , Incontinencia Urinaria , Masculino , Humanos , Próstata/diagnóstico por imagen , Próstata/cirugía , Prostatectomía/efectos adversos , Neoplasias de la Próstata/cirugía , Neoplasias de la Próstata/patología , Incontinencia Urinaria/etiología , Laparoscopía/efectos adversos , Laparoscopía/métodos , Imagen por Resonancia Magnética/efectos adversos , Recuperación de la Función , Estudios Retrospectivos
13.
J Neurosci ; 41(25): 5553-5565, 2021 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-34006589

RESUMEN

The hypokinetic motor symptoms of Parkinson's disease (PD) are closely linked with a decreased motor cortical output as a consequence of elevated basal ganglia inhibition. However, whether and how the loss of dopamine (DA) alters the cellular properties of motor cortical neurons in PD remains undefined. We induced parkinsonism in adult C57BL/6 mice of both sexes by injecting neurotoxin, 6-hydroxydopamine (6-OHDA), into the medial forebrain bundle. By using ex vivo patch-clamp recording and retrograde tracing approach, we found that the intrinsic excitability of pyramidal tract neurons (PTNs) in the primary motor cortical (M1) layer (L)5b was greatly decreased in parkinsonism; but the intratelencephalic neurons (ITNs) were not affected. The cell type-specific intrinsic adaptations were associated with a depolarized threshold and broadened width of action potentials (APs) in PTNs. Moreover, the loss of midbrain dopaminergic neurons impaired the capability of M1 PTNs to sustain high-frequency firing, which could underlie their abnormal pattern of activity in the parkinsonian state. We also showed that the decreased excitability in parkinsonism was caused by an impaired function of both persistent sodium channels and the large conductance, Ca2+-activated K+ channels. Acute activation of dopaminergic receptors failed to rescue the impaired intrinsic excitability of M1 PTNs in parkinsonian mice. Altogether, our data demonstrated a cell type-specific decrease of the excitability of M1 pyramidal neurons in parkinsonism. Thus, intrinsic adaptations in the motor cortex provide novel insight in our understanding of the pathophysiology of motor deficits in PD.SIGNIFICANCE STATEMENT The degeneration of midbrain dopaminergic neurons in Parkinson's disease (PD) remodels the connectivity and function of cortico-basal ganglia-thalamocortical network. However, whether and how dopaminergic degeneration and the associated basal ganglia dysfunction alter motor cortical circuitry remain undefined. We found that pyramidal neurons in the layer (L)5b of the primary motor cortex (M1) exhibit distinct adaptations in response to the loss of midbrain dopaminergic neurons, depending on their long-range projections. Besides the decreased thalamocortical synaptic excitation as proposed by the classical model of Parkinson's pathophysiology, these results, for the first time, show novel cellular and molecular mechanisms underlying the abnormal motor cortical output in parkinsonism.


Asunto(s)
Corteza Motora/fisiopatología , Trastornos Parkinsonianos/fisiopatología , Células Piramidales/patología , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL
14.
Physiol Genomics ; 54(10): 389-401, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-36062885

RESUMEN

Military Deployment to Southwest Asia and Afghanistan and exposure to toxic airborne particulates have been associated with an increased risk of developing respiratory disease, collectively termed deployment-related respiratory diseases (DRRDs). Our knowledge about how particulates mediate respiratory disease is limited, precluding the appropriate recognition or management. Central to this limitation is the lack of understanding of how exposures translate into dysregulated cell identity with dysregulated transcriptional programs. The small airway epithelium is involved in both the pathobiology of DRRD and fine particulate matter deposition. To characterize small airway epithelial cell epigenetic and transcriptional responses to Afghan desert particulate matter (APM) and investigate the functional interactions of transcription factors that mediate these responses, we applied two genomics assays, the assay for transposase accessible chromatin with sequencing (ATAC-seq) and Precision Run-on sequencing (PRO-seq). We identified activity changes in a series of transcriptional pathways as candidate regulators of susceptibility to subsequent insults, including signal-dependent pathways, such as loss of cytochrome P450 or P53/P63, and lineage-determining transcription factors, such as GRHL2 loss or TEAD3 activation. We further demonstrated that TEAD3 activation was unique to APM exposure despite similar inflammatory responses when compared with wood smoke particle exposure and that P53/P63 program loss was uniquely positioned at the intersection of signal-dependent and lineage-determining transcriptional programs. Our results establish the utility of an integrated genomics approach in characterizing responses to exposures and identifying genomic targets for the advanced investigation of the pathogenesis of DRRD.


Asunto(s)
Células Epiteliales Alveolares , Material Particulado , Factores de Transcripción , Afganistán , Células Epiteliales Alveolares/metabolismo , Cromatina/metabolismo , Epigénesis Genética , Genómica/métodos , Despliegue Militar , Material Particulado/toxicidad , Enfermedades Respiratorias/epidemiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transposasas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
15.
Curr Issues Mol Biol ; 44(10): 4822-4837, 2022 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-36286043

RESUMEN

Atherosclerosis is a major risk factor for type 2 diabetes (T2D) mortality. We aim to investigate the changes in miR-21, miR-122, miR-33a and miR-3064-5p in circulation and the liver of ApoE-/- mice with streptozocin (STZ)-induced T2D. Twenty 5-week-old male ApoE-/- mice were randomly assigned to the control (n = 10) and T2D group (n = 10) and intraperitoneally injected with a citrate buffer and streptozotocin (STZ) (40 mg/kg BW) once a day for three consecutive days. The successfully STZ-induced T2D mice (n = 5) and control mice (n = 5) were then fed with a high-fat diet (HFD) for 34 weeks. Compared to the control mice, ApoE-/- mice with STZ-induced T2D had slower (p < 0.05) growth, increased (p < 0.05) total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C), decreased (p < 0.05) high-density lipoprotein cholesterol (HDL-C) in serum, reduced (p < 0.05) TC and sterol regulatory element-binding protein-2 (Srebp-2), elevated (p < 0.05) ATP-binding-cassette-transporter-A1 (Abca1) in the liver, aggravated (p < 0.05) atherosclerotic lesions in the aorta, downregulated (p < 0.05) miR-21 and miR-33a, and upregulated (p < 0.05) miR-122 and miR-3064-5p in serum and the liver. In addition, the aortic lesions showed a positive correlation with miR-122 (r = 1.000, p = 0.001) and a negative correlation with miR-21 (r = −1.000, p = 0.001) in ApoE-/- mice with T2D. In conclusion, T2D-accelerated atherosclerosis correlates with a reduction in miR-21 and miR-33a and an elevation in miR-122 and miR-3064-5p in circulation and the liver of ApoE-/- mice.

16.
Small ; 18(1): e2105684, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34741404

RESUMEN

To develop methods to generate, manipulate, and detect plasmonic signals by electrical means with complementary metal-oxide-semiconductor (CMOS)-compatible materials is essential to realize on-chip electronic-plasmonic transduction. Here, electrically driven, CMOS-compatible electronic-plasmonic transducers with Al-AlOX -Cu tunnel junctions as the excitation source of surface plasmon polaritons (SPPs) and Si-Cu Schottky diodes as the detector of SPPs, connected via plasmonic strip waveguides of Cu, are demonstrated. Remarkably, the electronic-plasmonic transducers exhibit overall transduction efficiency of 1.85 ± 0.03%, five times higher than previously reported transducers with two tunnel junctions (metal-insulator-metal (MIM)-MIM transducers) where SPPs are detected based on optical rectification. The result establishes a new platform to convert electronic signals to plasmonic signals via electrical means, paving the way toward CMOS-compatible plasmonic components.

17.
Respir Res ; 23(1): 31, 2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-35172835

RESUMEN

BACKGROUND: Toll-interacting protein (Tollip) is one of the key negative regulators in host innate immunity. Genetic variation of Tollip has been associated with less Tollip expression and poor lung function in asthmatic patients, but little is known about the role of Tollip in human airway type 2 inflammatory response, a prominent feature in allergic asthma. OBJECTIVE: Our goal was to determine the role and underlying mechanisms of Tollip in human airway epithelial responses such as eotaxin to type 2 cytokine IL-13. METHODS: Tollip deficient primary human airway epithelial cells from 4 healthy donors were generated by the gene knockdown approach and stimulated with IL-13 to measure activation of transcription factor STAT3, and eotaxin-3, an eosinophilic chemokine. RESULTS: Following IL-13 treatment, Tollip deficient cells had significantly higher levels of STAT3 activation and eotaxin-3 than the scrambled control counterpart, which was reduced by a STAT3 inhibitor. Interaction between Tollip and STAT3 proteins was identified by co-immunoprecipitation. CONCLUSION: Our results, for the first time, suggest that Tollip inhibits excessive eotaxin-3 induction by IL-13, in part through the interaction and inhibition of STAT3. These findings lend evidence to the potential of a STAT3 inhibitor as a therapeutic target, especially for type 2 inflammation-high asthmatics with Tollip deficiency.


Asunto(s)
Asma/metabolismo , Citocinas/metabolismo , Células Epiteliales/metabolismo , Inmunidad Innata , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Mucosa Respiratoria/metabolismo , Factor de Transcripción STAT3/metabolismo , Adulto , Anciano , Asma/inmunología , Asma/patología , Células Cultivadas , Células Epiteliales/patología , Femenino , Voluntarios Sanos , Humanos , Masculino , Persona de Mediana Edad , Mucosa Respiratoria/inmunología , Mucosa Respiratoria/patología
18.
Biomed Microdevices ; 24(4): 37, 2022 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-36308627

RESUMEN

Puerarin, a bioactive flavone compound isolated from Pueraria (Wild.), provides hepatoprotection by anti-inflammatory, anti-alcoholism, and regulating mechanistic target of rapamycin (mTOR). Building evidence suggests that the activation of mTOR reduces liver injuries associated with alcohol consumption and metabolism. However, the poor water solubility, low bioavailability, and short half-life of puerarin hinder its clinical application. The utility of mesoporous silicon nanoparticles (MSNs) can improve traditional Chinese medicine limitations. Stober methods were used to fabricate MSNs@Pue, and the size, zeta potentials and drug encapsulation efficiency were characterized by a series of analytical methods. IVIS Imaging System demonstrated liver-targeted bio-distribution, and then high-throughput sequencing, immunoproteomics and ultrastructure methods indicated autophagy related protective mechanism, followed by curative effect evaluation for the treatment efficacy. An acute-on chronic ethanol-drinking according to Gao-binge model induced alcoholic hepatitis (AH) pathology and resulted in hepatic hyper-autophagy, which was improved with MSNs@Pue administration (puerarin: 30 mM, 42 mg/kg; intravenously [i.v.]). Ethanol-fed mice were found to have increased expression of autophagy-related proteins (Atg3, Atg7, LC3 and p62). In contrast, MSNs@Pue administration significantly decreased the expression of these proteins and alleviated fatty droplets infiltration in damaged liver. Furthermore, acute-on-chronic ethanol feeding also resulted in the activiation of ERK activation and mTOR expression, which were reversed with MSNs@Pue administration and better than the usage of puerarin alone. Results point to MSNs@Pue mediated ERK/mTOR signaling pathway activation as a possible protective strategy to improve AH, which provides a strategy and evidence for treating liver disease using an MSN delivery system.


Asunto(s)
Hepatitis Alcohólica , Nanopartículas , Ratones , Animales , Silicio , Hepatitis Alcohólica/tratamiento farmacológico , Nanopartículas/química , Autofagia , Serina-Treonina Quinasas TOR , Etanol , Dióxido de Silicio/química
19.
BMC Neurol ; 22(1): 400, 2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36324078

RESUMEN

BACKGROUND: Chronic inflammatory demyelinating polyneuropathy (CIDP) is an autoimmune disease that involves damage to the peripheral nervous system. The course of the disease can progress for more than 8 weeks, with frequent incidences of relapse-remission courses. This article reported a rare combination of CIDP with fluctuating symptoms, recurrence-remission, and comorbidity with psoriasis. CASE PRESENTATION: A 29-year-old male patient with repeated limb weakness and numbness was admitted to the hospital several times in the past six months. He had a history of psoriasis for 6 years, and the medications (clobetasol propionate ointment and calcipotriol ointment) treated for psoriasis were discontinued 1 year ago. During the hospitalization, repeated intravenous injections of human immunoglobulin G (IVIg), immunoadsorption, and secukinumab were performed. Nerve electrophysiology tests, ganglioside autoantibody spectrum tests, and clinical MRC muscle strength scores were performed on a regular basis to confirm the diagnosis of CIDP. The patient was regularly followed up. RESULTS: After repeated rounds of human IVIg and immunoadsorption, the patient's MRC score was increased by ≥ 6 points. The first ganglioside autoantibody spectrum test showed anti-GQ1b IgG ( +) and anti-GM1 IgM ( +) antibodies, and all were negative after re-examination. Finally, the patient was treated with the IL-17A inhibitor secukinumab for psoriasis. During 7 months of follow-up, the CIDP and psoriasis symptoms are relatively stable. CONCLUSION: Combination of IVIg and immunoadsorption was highly effective in treating CIDP complicated with psoriasis. The clinical manifestations of CIDP are diverse. When relapse-remission occurs in the course of the disease, it is necessary to clarify whether it is combined with other autoimmune diseases and should control the autoimmune diseases as soon as possible.


Asunto(s)
Polirradiculoneuropatía Crónica Inflamatoria Desmielinizante , Psoriasis , Masculino , Humanos , Adulto , Polirradiculoneuropatía Crónica Inflamatoria Desmielinizante/complicaciones , Polirradiculoneuropatía Crónica Inflamatoria Desmielinizante/tratamiento farmacológico , Polirradiculoneuropatía Crónica Inflamatoria Desmielinizante/diagnóstico , Inmunoglobulinas Intravenosas/uso terapéutico , Pomadas/uso terapéutico , Anticuerpos Monoclonales Humanizados/uso terapéutico , Inmunoglobulina G , Gangliósidos , Enfermedad Crónica , Psoriasis/complicaciones , Psoriasis/tratamiento farmacológico , Comorbilidad , Recurrencia
20.
J Immunol ; 204(10): 2829-2839, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32245819

RESUMEN

The lung surfactant proteins are recognized as critical not only for their role in lowering lung surface tension but also in innate host defense. Reports have shown that some asthmatic patients have decreased levels of one member of this protein family in particular, surfactant protein-A (SP-A). Our studies set out to determine the contribution of SP-A to the response of a key effector cytokine in asthma, IL-13. Our studies employ both animal models sufficient and deficient in SP-A challenged with IL-13 and primary epithelial cells from participants with asthma that are exogenously treated with SP-A in the context of IL-13 challenge. The inflammatory response and mucin production were assessed in both model systems. As compared with WT mice, we show that the activity of IL-13 is dramatically augmented in SP-A-/- mice, which have significantly increased neutrophil and eosinophil recruitment, mucin production and asthma-associated cytokines in the bronchoalveolar lavage fluid. In parallel, we show asthma-associated factors are attenuated in human cells from asthma subjects when exogenous SP-A is added during IL-13 challenge. Although many of these phenotypes have previously been associated with STAT6 signaling, SP-A inhibited IL-13-induced STAT3 phosphorylation in mice and in human epithelial cells while having little effect on STAT6 phosphorylation. In addition, when either STAT3 or IL-6 were inhibited in mice, the phenotypes observed in SP-A-/- mice were significantly attenuated. These studies suggest a novel mechanism for SP-A in asthma as a modulator of IL-13-induced inflammation via mediating downstream IL-6/STAT3 signaling.


Asunto(s)
Eosinófilos/inmunología , Inflamación/metabolismo , Interleucina-13/metabolismo , Neutrófilos/inmunología , Proteína A Asociada a Surfactante Pulmonar/metabolismo , Mucosa Respiratoria/metabolismo , Animales , Asma , Movimiento Celular , Células Cultivadas , Modelos Animales de Enfermedad , Humanos , Interleucina-6/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína A Asociada a Surfactante Pulmonar/genética , Mucosa Respiratoria/patología , Factor de Transcripción STAT3/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA