Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Antimicrob Agents Chemother ; : e0064224, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39082882

RESUMEN

Praziquantel (PZQ) is currently the only approved drug for treating clonorchiasis, but its poor efficacy against Clonorchis sinensis larvae has highlighted the need to develop newer drugs. In this study, to address this challenge, we investigated the anti-parasitic efficacy of miltefosine (MLT), curcumin (CUR), and PZQ against C. sinensis metacercariae (CsMC), newly excysted juvenile worms (CsNEJs), and adults. Larvicidal effects of MLT and CUR surpassed those elicited by PZQ in vitro. These two drugs exerted their effect against both CsMC and CsNEJs in a dose- and time-dependent manner. To confirm the effect of these drugs in vivo, Syrian golden hamsters were orally infected with 100 CsMC and subsequently treated with MLT, CUR, or PZQ at 1 and 4 weeks post-infection (wpi). MLT and CUR reduced the worm recoveries at 1 and 4 wpi, indicating that these drugs were efficacious against both larvae and adult C. sinensis. PZQ was only efficacious against adult worms. Interestingly, both MLT and CUR showed lower levels of C. sinensis-specific IgG responses than the infection control group, implying that worm burden and bile IgG responses could be correlated. These results indicate that MLT and CUR are efficacious against both larval and adult stages of C. sinensis, thereby highlighting their potential for further development as alternative therapeutic options for clonorchiasis.

2.
Respir Res ; 25(1): 7, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38178222

RESUMEN

Excessive pulmonary inflammation is the hallmark of respiratory syncytial virus (RSV) infection hindering efficacious RSV vaccine development. Yet, the vast majority of the experimental RSV vaccine studies use laboratory-adapted RSV strains that do not reflect the highly pathogenic and inflammatory nature of the virus found in clinical settings. Here, we re-evaluated the protective efficacy of the virus-like particle (VLP) vaccine co-expressing the pre-fusion (pre-F) protein and G protein with tandem repeats (Gt) reported in our previous study against the recombinant RSV rA2-line19F strain, which inflicts severe mucus production and inflammation in mice. VLP vaccine immunization elicited virus-specific serum antibody responses that mediated RSV rA2-line19F virus neutralization. VLP vaccine immunization promoted Th1 immune response development in the spleens and CD8 + T cell influx into the lungs of mice, which are essential for efficient viral clearance and dampened inflammatory response. When compared to the VLPs expressing only the pre-F antigen, those co-expressing both pre-F and Gt antigens conferred better protection in mice against rA2-line19F challenge infection. Overall, our data suggest that the pre-clinical VLP vaccine co-expressing RSV pre-F and Gt antigens can effectively protect mice against RSV strains that resemble pathogenic clinical isolates.


Asunto(s)
Infecciones por Virus Sincitial Respiratorio , Vacunas contra Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Animales , Ratones , Anticuerpos Antivirales , Pulmón/patología , Vacunas contra Virus Sincitial Respiratorio/genética , Proteínas de Unión al GTP , Ratones Endogámicos BALB C , Anticuerpos Neutralizantes
3.
Antiviral Res ; 230: 105979, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39111639

RESUMEN

Orally dissolving films (ODF) are designed to be dissolved on the tongue and absorbed in the mouth. It offers multiple advantages over the commonly used needle-based vaccines, especially in terms of convenience allowing safe, painless, and easy self-administration. As the efficacy of ODF-encapsulated influenza vaccines has not been demonstrated, we assessed the protection elicited by inactivated influenza virus (A/PR/8/34, PR8) vaccine delivered using ODFs in mice. Trehalose and pullulan components of the ODF ensured that the HA antigens of the inactivated PR8 virus retained their stability while ensuring the rapid release of the vaccines upon exposure to murine saliva. Mice were immunized thrice by placing the PR8-ODF on the tongues of mice at 4-week intervals, and vaccine-induced protection was evaluated upon lethal homologous challenge infection. The PR8-ODF vaccination elicited virus-specific serum IgG and IgA antibody responses, hemagglutinin inhibition (HAI), and viral neutralization. Upon challenge infection, ODF vaccination showed higher levels of IgG and IgA antibody responses in the lungs and antibody-secreting cell (ASC) responses in both lung and spleen compared to unimmunized controls. These results corresponded with the enhanced T cell and germinal center B cell responses in the lungs and spleens. Importantly, ODF vaccination significantly reduced lung virus titers and inflammatory cytokines (IFN-γ, IL-6) production compared to unvaccinated control. ODF vaccination ensured 100% survival and prevented weight loss in mice. These findings suggest that influenza vaccine delivery through ODFs could be a promising approach for oral vaccine development.

4.
Vaccines (Basel) ; 12(7)2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39066431

RESUMEN

Cutaneous leishmaniasis (CL) is a tropical disease endemic in many parts of the world. Characteristic clinical manifestations of CL include the formation of ulcerative skin lesions that can inflict life-long disability if left untreated. Although drugs are available, they are unaffordable and out of reach for individuals who need them the most. Developing a highly cost-efficient CL vaccine could address this problem but such a vaccine remains unavailable. Here, we developed a chimeric influenza virus-like particle expressing the Leishmania amazonensis promastigote surface antigen (LaPSA-VLP). LaPSA-VLPs were self-assembled in Spodoptera frugiperda insect cell lines using the baculovirus expression system. After characterizing the vaccines and confirming successful VLP assembly, BALB/c mice were immunized with these vaccines for efficacy assessment. Sera acquired from mice upon subcutaneous immunization with the LaPSA-VLP specifically interacted with the L. amazonensis soluble total antigens. LaPSA-VLP-immunized mice elicited significantly greater quantities of parasite-specific IgG from the spleens, popliteal lymph nodes, and footpads than unimmunized mice. LaPSA-VLP immunization also enhanced the proliferation of B cell populations in the spleens of mice and significantly lessened the CL symptoms, notably the footpad swelling and IFN-γ-mediated inflammatory response. Overall, immunizing mice with the LaPSA-VLPs prevented mice from developing severe CL symptoms, signifying their developmental potential.

5.
PLoS Negl Trop Dis ; 18(6): e0012229, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38857253

RESUMEN

Leishmania donovani surface glycoprotein 63 (GP63) is a major virulence factor involved in parasite escape and immune evasion. In this study, we generated virus-like particles (VLPs) expressing L. donovani GP63 using the baculovirus expression system. Mice were intramuscularly immunized with GP63-VLPs and challenged with L. donovani promastigotes. GP63-VLP immunization elicited higher levels of L. donovani antigen-specific serum antibodies and enhanced splenic B cell, germinal center B cell, CD4+, and CD8+ T cell responses compared to unimmunized controls. GP63-VLPs inhibited the influx of pro-inflammatory cytokines IFN-γ and IL-6 in the livers, as well as thwarting the development of splenomegaly in immunized mice. Upon L. donovani challenge infection, a drastic reduction in splenic parasite burden was observed in VLP-immunized mice. These results indicate that GP63-VLPs immunization conferred protection against L. donovani challenge infection by inducing humoral and cellular immunity in mice.


Asunto(s)
Leishmania donovani , Leishmaniasis Visceral , Ratones Endogámicos BALB C , Vacunas de Partículas Similares a Virus , Animales , Leishmania donovani/inmunología , Ratones , Vacunas de Partículas Similares a Virus/inmunología , Vacunas de Partículas Similares a Virus/administración & dosificación , Femenino , Leishmaniasis Visceral/prevención & control , Leishmaniasis Visceral/inmunología , Anticuerpos Antiprotozoarios/sangre , Anticuerpos Antiprotozoarios/inmunología , Vacunas contra la Leishmaniasis/inmunología , Vacunas contra la Leishmaniasis/administración & dosificación , Eficacia de las Vacunas , Inmunidad Celular , Bazo/inmunología , Linfocitos T CD8-positivos/inmunología , Linfocitos B/inmunología , Inmunidad Humoral , Glicoproteínas de Membrana/inmunología , Glicoproteínas de Membrana/genética , Citocinas/inmunología , Metaloendopeptidasas
6.
Nanomedicine (Lond) ; 19(9): 741-754, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38390688

RESUMEN

Aims: To develop an effective universal vaccine against antigenically different influenza viruses. Materials & methods: We generated influenza virus-like particles (VLPs) expressing the H1 and H3 antigens with or without M2e5x. VLP-induced immune responses and crossprotection against H1N1, H3N2 or H5N1 viruses were assessed to evaluate their protective efficacy. Results: H1H3M2e5x immunization elicited higher crossreactive IgG antibodies than H1H3 VLPs. Upon challenge, both VLPs enhanced lung IgG, IgA and germinal center B-cell responses compared with control. While these VLPs conferred protection, H1H3M2e5x showed greater lung viral load reduction than H1H3 VLPs with minimal body weight loss. Conclusion: Utilizing VLPs containing dual-hemagglutinin, along with M2e5x, can be a vaccination strategy for inducing crossprotection against influenza A viruses.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Subtipo H5N1 del Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Infecciones por Orthomyxoviridae , Humanos , Animales , Ratones , Gripe Humana/prevención & control , Hemaglutininas , Subtipo H3N2 del Virus de la Influenza A , Vacunas contra la Influenza/uso terapéutico , Inmunoglobulina G , Infecciones por Orthomyxoviridae/prevención & control , Ratones Endogámicos BALB C
7.
Parasites Hosts Dis ; 62(2): 193-204, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38835260

RESUMEN

Malaria is a global disease affecting a large portion of the world's population. Although vaccines have recently become available, their efficacies are suboptimal. We generated virus-like particles (VLPs) that expressed either apical membrane antigen 1 (AMA1) or microneme-associated antigen (MIC) of Plasmodium berghei and compared their efficacy in BALB/c mice. We found that immune sera acquired from AMA1 VLP- or MIC VLP-immunized mice specifically interacted with the antigen of choice and the whole P. berghei lysate antigen, indicating that the antibodies were highly parasite-specific. Both VLP vaccines significantly enhanced germinal center B cell frequencies in the inguinal lymph nodes of mice compared with the control, but only the mice that received MIC VLPs showed significantly enhanced CD4+ T cell responses in the blood following P. berghei challenge infection. AMA1 and MIC VLPs significantly suppressed TNF-α and interleukin-10 production but had a negligible effect on interferon-γ. Both VLPs prevented excessive parasitemia buildup in immunized mice, although parasite burden reduction induced by MIC VLPs was slightly more effective than that induced by AMA1. Both VLPs were equally effective at preventing body weight loss. Our findings demonstrated that the MIC VLP was an effective inducer of protection against murine experimental malaria and should be the focus of further development.


Asunto(s)
Antígenos de Protozoos , Vacunas contra la Malaria , Proteínas de la Membrana , Plasmodium berghei , Proteínas Protozoarias , Vacunas de Partículas Similares a Virus , Animales , Femenino , Ratones , Anticuerpos Antiprotozoarios/inmunología , Anticuerpos Antiprotozoarios/sangre , Antígenos de Protozoos/inmunología , Linfocitos B/inmunología , Linfocitos B/metabolismo , Linfocitos T CD4-Positivos/inmunología , Malaria/prevención & control , Malaria/inmunología , Vacunas contra la Malaria/inmunología , Vacunas contra la Malaria/administración & dosificación , Proteínas de la Membrana/inmunología , Ratones Endogámicos BALB C , Parasitemia/inmunología , Parasitemia/prevención & control , Plasmodium berghei/inmunología , Proteínas Protozoarias/inmunología , Proteínas Protozoarias/genética , Vacunas de Partículas Similares a Virus/inmunología , Vacunas de Partículas Similares a Virus/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA