Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Biotechnol Bioeng ; 120(7): 1882-1890, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36929487

RESUMEN

A number of studies have demonstrated that depth filtration can provide significant adsorptive removal of host cell proteins (HCP), but there is still considerable uncertainty regarding the underlying factors controlling HCP binding. This study compared the binding characteristics of two fine grade depth filters, the X0SP (polyacrylic fiber with a synthetic silica filter aid) and X0HC (cellulose fibers with diatomaceous earth (DE) as a filter aid), using a series of model proteins with well-defined physical characteristics. Protein binding to the X0SP filter was dominated by electrostatic interactions with greatest capacity for positively-charged proteins. In contrast, the X0HC filter showed greater binding of more hydrophobic proteins although electrostatic interactions also played a role. In addition, ovotransferrin showed unusually high binding capacity to the X0HC, likely due to interactions with metals in the DE. Scanning Electron Microscopy with Energy Dispersive Spectroscopy was used to obtain additional understanding of the binding behavior. These results provide important insights into the physical phenomena governing HCP binding to both fully synthetic and natural (cellulose + DE) depth filters.


Asunto(s)
Tierra de Diatomeas , Dióxido de Silicio , Tierra de Diatomeas/química , Filtración/métodos , Adsorción , Proteínas/química
2.
Membranes (Basel) ; 12(3)2022 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-35323774

RESUMEN

One major challenge in the development of nanoparticle-based therapeutics, including viral vectors for the delivery of gene therapies, is the development of cost-effective purification technologies. The objective of this study was to examine fouling and retention behaviors during the filtration of model nanoparticles through membranes of different pore sizes and the effect of solution conditions. Data were obtained with 30 nm fluorescently labeled polystyrene latex nanoparticles using both cellulosic and polyethersulfone membranes at a constant filtrate flux, and both pressure and nanoparticle transmission were evaluated as a function of cumulative filtrate volume. The addition of NaCl caused a delay in nanoparticle transmission and an increase in fouling. Nanoparticle transmission was also a function of particle hydrophobicity. These results provide important insights into the factors controlling transmission and fouling during nanoparticle filtration as well as a framework for the development of membrane processes for the purification of nanoparticle-based therapeutics.

3.
Sci Rep ; 9(1): 12345, 2019 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-31451712

RESUMEN

Clathrate hydrate is considered to be a potential medium for gas storage and transportation. Slow kinetics of hydrate formation is a hindrance to the commercialized process development of such applications. The kinetics of methane hydrate formation from the reaction of ice powder and methane gas doped with/without saturated ethanol vapor at constant pressure of 16.55 ± 0.20 MPa and constant temperature ranging from -15 to -1.0 °C were investigated. The methane hydrate formation can be dramatically accelerated by simply doping ethanol into methane gas with ultralow ethanol concentration (<94 ppm by mole fraction) in the gas phase. For ethanol-doped system 80.1% of ice powder were converted into methane hydrate after a reaction time of 4 h, while only 26.6% of ice powder was converted into methane hydrate after a reaction time of 24 h when pure methane gas was used. Furthermore, this trace amount of ethanol could also substantially suppress the self-preservation effect to enhance the dissociation rate of methane hydrate (operated at 1 atm and temperatures below the ice melting point). In other words, a trace amount of ethanol doped in methane gas can act as a kinetic promoter for both the methane hydrate formation and dissociation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA