Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 179
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(45)2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34732572

RESUMEN

Changes in light quality caused by the presence of neighbor proximity regulate many growth and development processes of plants. PHYTOCHROME INTERACTING FACTOR 7 (PIF7), whose subcellular localization, DNA-binding properties, and protein abundance are regulated in a photoreversible manner, plays a central role in linking shade light perception and growth responses. How PIF7 activity is regulated during shade avoidance responses has been well studied, and many factors involved in this process have been identified. However, the detailed molecular mechanism by which shade light regulates the PIF7 protein level is still largely unknown. Here, we show that the PIF7 protein level regulation is important for shade-induced growth. Two ubiquitin-specific proteases, UBP12 and UBP13, were identified as positive regulators in shade avoidance responses by increasing the PIF7 protein level. The ubp12-2w/13-3 double mutant displayed significantly impaired sensitivity to shade-induced cell elongation and reproduction acceleration. Our genetic and biochemical analysis showed that UBP12 and UBP13 act downstream of phyB and directly interact with PIF7 to maintain PIF7 stability and abundance through deubiquitination.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/efectos de la radiación , Proteínas de Unión al ADN/metabolismo , Endopeptidasas/metabolismo , Desarrollo de la Planta , Arabidopsis/enzimología , Arabidopsis/crecimiento & desarrollo , Estabilidad Proteica
2.
Nano Lett ; 23(3): 916-924, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-36651830

RESUMEN

Gibberellins (GAs) are a class of phytohormones, important for plant growth, and very difficult to distinguish because of their similarity in chemical structures. Herein, we develop the first nanosensors for GAs by designing and engineering polymer-wrapped single-walled carbon nanotubes (SWNTs) with unique corona phases that selectively bind to bioactive GAs, GA3 and GA4, triggering near-infrared (NIR) fluorescence intensity changes. Using a new coupled Raman/NIR fluorimeter that enables self-referencing of nanosensor NIR fluorescence with its Raman G-band, we demonstrated detection of cellular GA in Arabidopsis, lettuce, and basil roots. The nanosensors reported increased endogenous GA levels in transgenic Arabidopsis mutants that overexpress GA and in emerging lateral roots. Our approach allows rapid spatiotemporal detection of GA across species. The reversible sensor captured the decreasing GA levels in salt-treated lettuce roots, which correlated remarkably with fresh weight changes. This work demonstrates the potential for nanosensors to solve longstanding problems in plant biotechnology.


Asunto(s)
Arabidopsis , Nanotubos de Carbono , Giberelinas/química , Giberelinas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Arabidopsis/metabolismo , Nanotubos de Carbono/química , Fluorescencia , Colorantes
3.
Genes Dev ; 30(3): 251-6, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26798133

RESUMEN

H3K9 methylation is usually associated with DNA methylation, and together they symbolize transcriptionally silenced heterochromatin. A number of proteins involved in epigenetic processes have been characterized. However, how the stability of these proteins is regulated at the post-translational level is largely unknown. Here, we show that an Arabidopsis JmjC domain protein, JMJ24, possesses ubiquitin E3 ligase activity. JMJ24 directly targets a DNA methyltransferase, CHROMOMETHYLASE 3 (CMT3), for proteasomal degradation to initiate destabilization of the heterochromatic state of endogenous silenced loci. Our results uncover an additional connection between two conserved epigenetic modifications: histone modification and DNA methylation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Histona Demetilasas con Dominio de Jumonji/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , ADN-Citosina Metilasas/genética , ADN-Citosina Metilasas/metabolismo , Epigénesis Genética , Metilación , Complejo de la Endopetidasa Proteasomal/genética , Estabilidad Proteica , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
4.
New Phytol ; 237(4): 1215-1228, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36377104

RESUMEN

Phosphate (Pi) availability is a major factor limiting plant growth and development. The key transcription factor controlling Pi-starvation response (PSR) is PHOSPHATE STARVATION RESPONSE 1 (PHR1) whose transcript levels do not change with changes in Pi levels. However, how PHR1 stability is regulated at the post-translational level is relatively unexplored in Arabidopsis thaliana. Inositol polyphosphates (InsPn) are important signal molecules that promote the association of stand-alone SPX domain proteins with PHR1 to regulate PSR. Here, we show that NITROGEN LIMITATION ADAPTATION (NLA) E3 ligase can associate with PHR1 through its conserved SPX domain and polyubiquitinate PHR1 in vitro. The association with PHR1 and its ubiquitination is enhanced by InsP6 but not by InsP5. Analysis of InsPn-related mutants and an overexpression plant shows PHR1 levels are more stable in itpk4-1 and vih2-4/VIH1amiRNA but less stable in ITPK4 overexpression plants. Under Pi-deficient conditions, nla seedlings contain high PHR1 levels, display long root hair and accumulate anthocyanin in shoots phenocopying PHR1 overexpression plants. By contrast, NLA overexpression plants phenocopy phr1 whose phenotypes are opposite to those of nla. Our results suggest NLA functions as a negative regulator of Pi response by modulating PHR1 stability and the NLA/PHR1 association depends on InsPn levels.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Fosfatos/metabolismo , Polifosfatos/metabolismo , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
5.
Nucleic Acids Res ; 49(D1): D1489-D1495, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33079992

RESUMEN

Long noncoding RNAs (lncRNAs) are transcripts longer than 200 nucleotides with little or no protein coding potential. The expanding list of lncRNAs and accumulating evidence of their functions in plants have necessitated the creation of a comprehensive database for lncRNA research. However, currently available plant lncRNA databases have some deficiencies, including the lack of lncRNA data from some model plants, uneven annotation standards, a lack of visualization for expression patterns, and the absence of epigenetic information. To overcome these problems, we upgraded our Plant Long noncoding RNA Database (PLncDB, http://plncdb.tobaccodb.org/), which was based on a uniform annotation pipeline. PLncDB V2.0 currently contains 1 246 372 lncRNAs for 80 plant species based on 13 834 RNA-Seq datasets, integrating lncRNA information from four other resources including EVLncRNAs, RNAcentral and etc. Expression patterns and epigenetic signals can be visualized using multiple tools (JBrowse, eFP Browser and EPexplorer). Targets and regulatory networks for lncRNAs are also provided for function exploration. In addition, PLncDB V2.0 is hierarchical and user-friendly and has five built-in search engines. We believe PLncDB V2.0 is useful for the plant lncRNA community and data mining studies and provides a comprehensive resource for data-driven lncRNA research in plants.


Asunto(s)
Bases de Datos Genéticas , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Plantas/genética , ARN Largo no Codificante/genética , ARN de Planta/genética , Biología Computacional/métodos , Minería de Datos , Conjuntos de Datos como Asunto , Epigénesis Genética , Secuenciación de Nucleótidos de Alto Rendimiento , Internet , Anotación de Secuencia Molecular , Filogenia , Plantas/clasificación , Plantas/metabolismo , ARN Largo no Codificante/clasificación , ARN Largo no Codificante/metabolismo , ARN de Planta/clasificación , ARN de Planta/metabolismo , Programas Informáticos
6.
New Phytol ; 236(5): 1779-1795, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36093737

RESUMEN

The mediator complex is highly conserved in eukgaryotes and is integral for transcriptional responses. Mediator subunits associate with signal-responsive transcription factors (TF) to activate expression of specific signal-responsive genes. As the key TF of Arabidopsis thaliana senescence, ORESARA1 (ORE1) is required for nitrogen deficiency (-N) induced senescence; however, the mediator subunit that associates with ORE1 remains unknown. Here, we show that Arabidopsis MED19a associates with ORE1 to activate -N senescence-responsive genes. Disordered MED19a forms inducible nuclear condensates under -N that is regulated by decreasing MED19a lysine acetylation. MED19a carboxyl terminus (cMED19a) harbors a mixed-charged intrinsically disordered region (MC-IDR) required for ORE1 interaction and liquid-liquid phase separation (LLPS). Plant and human cMED19 are sufficient to form heterotypic condensates with ORE1. Human cMED19 MC-IDR, but not yeast cMED19 IDR, partially complements med19a suggesting functional conservation in evolutionarily distant eukaryotes. Phylogenetic analysis of eukaryotic cMED19 revealed that the MC-IDR could arise through convergent evolution. Our result of MED19 MC-IDR suggests that plant MED19 is regulated by phase separation during stress responses.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Complejo Mediador , Humanos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Complejo Mediador/genética , Complejo Mediador/metabolismo , Nutrientes , Filogenia , Transactivadores/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
J Math Biol ; 86(1): 11, 2022 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-36478092

RESUMEN

Recent progress in nanotechnology-enabled sensors that can be placed inside of living plants has shown that it is possible to relay and record real-time chemical signaling stimulated by various abiotic and biotic stresses. The mathematical form of the resulting local reactive oxygen species (ROS) wave released upon mechanical perturbation of plant leaves appears to be conserved across a large number of species, and produces a distinct waveform from other stresses including light, heat and pathogen-associated molecular pattern (PAMP)-induced stresses. Herein, we develop a quantitative theory of the local ROS signaling waveform resulting from mechanical stress in planta. We show that nonlinear, autocatalytic production and Fickian diffusion of H2O2 followed by first order decay well describes the spatial and temporal properties of the waveform. The reaction-diffusion system is analyzed in terms of a new approximate solution that we introduce for such problems based on a single term logistic function ansatz. The theory is able to describe experimental ROS waveforms and degradation dynamics such that species-dependent dimensionless wave velocities are revealed, corresponding to subtle changes in higher moments of the waveform through an apparently conserved signaling mechanism overall. This theory has utility in potentially decoding other stress signaling waveforms for light, heat and PAMP-induced stresses that are similarly under investigation. The approximate solution may also find use in applied agricultural sensing, facilitating the connection between measured waveform and plant physiology.


Asunto(s)
Peróxido de Hidrógeno , Estrés Mecánico
8.
New Phytol ; 229(6): 3360-3376, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33251584

RESUMEN

The mechanism of heat stress response in plants has been studied, focusing on the function of transcription factors (TFs). Generally, TFs recruit coactivators, such as Mediator, are needed to assemble the transcriptional machinery. However, despite the close relationship with TFs, how coactivators are involved in transcriptional regulation under heat stress conditions is largely unclear. We found a severe thermosensitive phenotype of Arabidopsis mutants of MED14 and MED17. Transcriptomic analysis revealed that a quarter of the heat stress (HS)-inducible genes were commonly downregulated in these mutants. Furthermore, chromatin immunoprecipitation assay showed that the recruitment of Mediator by HsfA1s, the master regulators of heat stress response, is an important step for the expression of HS-inducible genes. There was a differential requirement of Mediator among genes; TF genes have a high requirement whereas heat shock proteins (HSPs) have a low requirement. Furthermore, artificial activation of HsfA1d mimicking perturbation of protein homeostasis induced HSP gene expression without MED14 recruitment but not TF gene expression. Considering the essential role of MED14 in Mediator function, other coactivators may play major roles in HSP activation depending on the cellular conditions. Our findings highlight the importance of differential recruitment of Mediator for the precise control of HS responses in plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Respuesta al Choque Térmico/genética , Calor , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
Genome Res ; 27(8): 1427-1436, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28522613

RESUMEN

The 3' untranslated regions (3' UTRs) of mRNAs play important roles in the regulation of mRNA localization, translation, and stability. Alternative cleavage and polyadenylation (APA) generates mRNAs with different 3' UTRs, but the involvement of this process in stress response has not yet been clarified. Here, we report that a subset of stress-related genes exhibits 3' UTR extensions of their mRNAs during dehydration stress. These extended 3' UTRs have characteristics of long noncoding RNAs and likely do not interact with miRNAs. Functional studies using T-DNA insertion mutants reveal that they can act as antisense transcripts to repress expression levels of sense genes from the opposite strand or can activate the transcription or lead to read-through transcription of their downstream genes. Further analysis suggests that transcripts with 3' UTR extensions have weaker poly(A) signals than those without 3' UTR extensions. Finally, we show that their biogenesis is partially dependent on a trans-acting factor FPA. Taken together, we report that dehydration stress could induce transcript 3' UTR extensions and elucidate a novel function for these stress-induced 3' UTR extensions as long noncoding RNAs in the regulation of their neighboring genes.


Asunto(s)
Regiones no Traducidas 3' , Proteínas de Arabidopsis/genética , Arabidopsis/genética , ARN de Planta/genética , Estrés Fisiológico , Ácido Abscísico/farmacología , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , ADN Bacteriano , Deshidratación , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Reguladores del Crecimiento de las Plantas/farmacología , Poliadenilación , ARN Mensajero/genética
10.
Plant Physiol ; 180(1): 171-184, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30804010

RESUMEN

Plumeria (Plumeria rubra), well known for its brightly colored and fragrant flowers, emits a number of floral volatile organic compounds (VOCs). Plumeria flowers emit a total of 43 VOCs including nine phenylpropanoids/benzenoids, such as 2-phenylethanol (2PE), benzaldehyde, 2-phenylacetaldehyde (PAld), (E/Z)-phenylacetaldoxime (PAOx), benzyl nitrile (BN), and 2-phenylnitroethane (PN). To identify genes and pathways involved in the production of the major compound 2PE, we analyzed the plumeria floral transcriptome and found a highly expressed, flower-specific gene encoding a cytochrome P450 family 79D protein (PrCYP79D73), which catalyzed the formation of (E/Z)-PAOx. Feeding experiments with deuterated phenylalanine or deuterated (E/Z)-PAOx showed that (E/Z)-PAOx is an intermediate in the biosynthesis of 2PE, as are two nitrogen-containing volatiles, BN and PN, in plumeria flowers. Crude enzyme extracts from plumeria flowers converted l-phenylalanine to (E/Z)-PAOx, PAld, 2PE, BN, and PN. The biosynthesis of these compounds increased with addition of PrCYP79D73-enriched microsomes but was blocked by pretreatment with 4-phenylimidazole, an inhibitor of cytochrome P450 enzymes. Moreover, overexpression of PrCYP79D73 in Nicotiana benthamiana resulted in the emission of (E/Z)-PAOx as well as PAld, 2PE, BN, and PN, all of which were also found among plumeria floral VOCs. Taken together, our results demonstrate that PrCYP79D73 is a crucial player in the biosynthesis of the major floral VOC 2PE and other nitrogen-containing volatiles. These volatiles may be required for plant defense as well as to attract pollinators for the successful reproduction of plumeria.


Asunto(s)
Apocynaceae/metabolismo , Sistema Enzimático del Citocromo P-450/fisiología , Alcohol Feniletílico/metabolismo , Proteínas de Plantas/fisiología , Secuencia de Aminoácidos , Sistema Enzimático del Citocromo P-450/metabolismo , Odorantes , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Alineación de Secuencia , Transcriptoma , Compuestos Orgánicos Volátiles/metabolismo
11.
J Exp Bot ; 71(12): 3638-3652, 2020 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-32198522

RESUMEN

Sweet basil (Ocimum basilicum) plants produce its characteristic phenylpropene-rich essential oil in specialized structures known as peltate glandular trichomes (PGTs). Eugenol and chavicol are the major phenylpropenes produced by sweet basil varieties whose synthetic pathways are not fully elucidated. Eugenol is derived from coniferyl acetate by a reaction catalysed by eugenol synthase. An acyltransferase is proposed to convert coniferyl alcohol to coniferyl acetate which is the first committed step towards eugenol synthesis. Here, we perform a comparative next-generation transcriptome sequencing of different tissues of sweet basil, namely PGT, leaf, leaf stripped of PGTs (leaf-PGT), and roots, to identify differentially expressed transcripts specific to PGT. From these data, we identified a PGT-enriched BAHD acyltransferase gene ObCAAT1 and functionally characterized it. In vitro coupled reaction of ObCAAT1 with eugenol synthase in the presence of coniferyl alcohol resulted in eugenol production. Analysis of ObCAAT1-RNAi transgenic lines showed decreased levels of eugenol and accumulation of coniferyl alcohol and its derivatives. Coniferyl alcohol acts as a common substrate for phenylpropene and lignin biosynthesis. No differences were found in total lignin content of PGTs and leaves of transgenic lines, indicating that phenylpropene biosynthesis is not coupled to lignification in sweet basil.


Asunto(s)
Ocimum basilicum , Aciltransferasas/genética , Eugenol , Ocimum basilicum/genética , Hojas de la Planta , Tricomas
12.
Plant Cell ; 29(6): 1406-1424, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28536144

RESUMEN

The transcription factor MYC2 has emerged as a master regulator of jasmonate (JA)-mediated responses as well as crosstalk among different signaling pathways. The instability of MYC2 is in part due to the action of PUB10 E3 ligase, which can polyubiquitinate this protein. Here, we show that polyubiquitinated MYC2 can be deubiquitinated by UBP12 and UBP13 in vitro, suggesting that the two deubiquitinating enzymes can counteract the effect of PUB10 in vivo. Consistent with this view, UBP12 and UBP13 associate with MYC2 in the nucleus. Transgenic Arabidopsis thaliana plants deficient in UBP12 and UBP13 show accelerated decay of MYC2 and are hyposensitive to JA, whereas plants overexpressing UBP12 or UBP13 have prolonged MYC2 half-life and are hypersensitive to JA Our results suggest that there is a genetic link between UBP12, UBP13, and MYC2. Our results identify UBP12 and UBP13 as additional positive regulators of JA responses and suggest that these enzymes likely act by stabilizing MYC2.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Arabidopsis/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Ciclopentanos/farmacología , Endopeptidasas/metabolismo , Oxilipinas/farmacología , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Endopeptidasas/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/genética , Plantas Modificadas Genéticamente/efectos de los fármacos , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo
13.
Plant Cell ; 29(5): 1024-1038, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28400491

RESUMEN

The plant immune response is a complex process involving transcriptional and posttranscriptional regulation of gene expression. Responses to plant immunity are initiated upon the perception of pathogen-associated molecular patterns, including peptide fragment of bacterial flagellin (flg22) or translation elongation factor Tu (elf18). Here, we identify an Arabidopsis thaliana long-noncoding RNA, designated ELF18-INDUCED LONG-NONCODING RNA1 (ELENA1), as a factor enhancing resistance against Pseudomonas syringe pv tomato DC3000. ELENA1 knockdown plants show decreased expression of PATHOGENESIS-RELATED GENE1 (PR1) and the plants are susceptible to pathogens. By contrast, plants overexpressing ELENA1 show elevated PR1 expression after elf18 treatment and display a pathogen resistance phenotype. RNA-sequencing analysis of ELENA1-overexpressing plants after elf18 treatment confirms increased expression of defense-related genes compared with the wild type. ELENA1 directly interacts with Mediator subunit 19a (MED19a) and affects enrichment of MED19a on the PR1 promoter. These results show that MED19a regulates PR1 expression through ELENA1. Our findings uncover an additional layer of complexity, implicating long-noncoding RNAs in the transcriptional regulation of plant innate immunity.


Asunto(s)
Arabidopsis/genética , Arabidopsis/inmunología , ARN Largo no Codificante/genética , ARN Largo no Codificante/fisiología , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Inmunidad de la Planta/genética , Inmunidad de la Planta/fisiología , Pseudomonas syringae/patogenicidad
14.
Genes Cells ; 23(2): 105-111, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29271544

RESUMEN

By modifying the existing cytosolic RNA visualization tool pioneered by Schönberger, Hammes, and Dresselhaus (2012), we developed a method to visualize nuclear-localized RNA. Our method uses (i) an RNA component that consists of an RNA of interest that is fused to a bacteriophage-derived MS2 sequence; and (ii) GFP fused to MS2 coat protein (MSCP), which binds specifically to MS2 as is also the case in the method for cytosolic RNA visualization. The nuclear localization sequence (NLS) at the C-terminal of MSCP-GFP tethers the probe to the nucleus. To reduce background signals in the nucleus, we replaced the NLS with a nuclear export sequence (NES) that anchors the MSCP-GFP probe in the cytosol. Our nuclear RNA visualization method differs from previous methods in two aspects: (i) We used an NES to reduce nuclear background signal so that the MSCP-GFP probe localizes in the cytosol by default; (ii) We added mCherry as a visual marker in the RNA component to increase its efficient usage in a transient system.


Asunto(s)
Arabidopsis/metabolismo , Nicotiana/metabolismo , Señales de Localización Nuclear/metabolismo , ARN de Planta/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Citosol/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , ARN de Planta/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Nicotiana/genética , Nicotiana/crecimiento & desarrollo
15.
New Phytol ; 221(4): 2067-2079, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30307032

RESUMEN

Plant immune response is initiated upon the recognition of pathogen-associated molecular patterns such as elf18. Previously, we identified an Arabidopsis ELF18-INDUCED LONG NONCODING RNA 1 (ELENA1), as a positive transcriptional regulator of immune responsive genes. ELENA1 associated with Mediator subunit 19a (MED19a) to enhance enrichment of the complex on PATHOGENESIS-RELATED GENE 1 (PR1) promoter. In vitro and in vivo RNA-protein interaction experiments showed that ELENA1 can also interact with FIBRILLARIN 2 (FIB2). Co-immunoprecipitation and bimolecular fluorescence complementation assay showed that FIB2 directly interacts with MED19a in nucleoplasm and nucleolus. Analysis of fib2 mutant showed that FIB2 functions as a negative transcriptional regulator for immune responsive genes, including PR1. Genetic and biochemical analyses demonstrated that ELENA1 can dissociate the FIB2/MED19a complex and release FIB2 from PR1 promoter to enhance PR1 expression. ELENA1 increases PR1 expression by evicting the repressor (FIB2) from the activator (MED19a). Our findings uncover an additional layer of complexity in the transcriptional regulation of plant immune responsive genes by long noncoding RNA.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Metiltransferasas/metabolismo , Subunidades de Proteína/metabolismo , ARN Largo no Codificante/metabolismo , Arabidopsis/genética , Arabidopsis/inmunología , Arabidopsis/microbiología , Regulación de la Expresión Génica de las Plantas , Complejo Mediador/metabolismo , Mutación/genética , Fenotipo , Regiones Promotoras Genéticas , Unión Proteica , Pseudomonas syringae/fisiología , ARN Largo no Codificante/genética
16.
New Phytol ; 223(3): 1447-1460, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31050353

RESUMEN

Nitrogen deficiency (-N) in plants triggers leaf senescence which is regulated by the transcription factor ORE1. Little is known about post-translational regulation of ORE1 in this process. Here, we show that UBP12/UBP13 (ubiquitin-specific protease 12/13) antagonize the action of NLA (nitrogen limitation adaptation) E3 ligase to maintain ORE1 homeostasis. In vitro pull-down and in vivo co-immunoprecipitation assays demonstrated specific binding between UBP12/UBP13 and ORE1. We further analyzed in various genotypes total Chl content and expression levels of senescence-related genes under -N conditions. We found that UBP12/UBP13 can deubiquitinate polyubiquitinated ORE1 in vitro and increase the stability of ORE1 in vivo in MG132/cycloheximide-chase experiments. Plants overexpressing UBP12/UBP13 display accelerated leaf senescence which is reversed by the ore1 mutation. By contrast, the senescence phenotype of plants overexpressing ORE1 is exacerbated by UBP12/UBP13 overexpression. The expression of senescence-related genes tracks the senescence phenotype. ORE1 protein levels can be elevated by UBP12/UBP13 overexpression but decreased in ubp12-2w/13-3. In conclusion, UBP12/UBP13 deubiquitinate ORE1 to stabilize this transcription factor and promote its activity as a positive regulator for leaf senescence under -N conditions. Our study shows that UBP12/UBP13 counteracts the effect of NLA E3 ligase to accelerate leaf senescence under nitrogen starvation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Endopeptidasas/metabolismo , Nitrógeno/deficiencia , Hojas de la Planta/enzimología , Hojas de la Planta/crecimiento & desarrollo , Factores de Transcripción/metabolismo , Arabidopsis/genética , Genotipo , Modelos Biológicos , Mutación/genética , Fenotipo , Poliubiquitina/metabolismo , Unión Proteica , Estabilidad Proteica , Ubiquitinación
17.
New Phytol ; 224(1): 493-504, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31125430

RESUMEN

Several SQUAMASA PROMOTER BINDING PROTEIN-LIKE (SPL) transcription factors are involved in plant developmental transition from vegetative to reproductive growth. However, the function of SPL10 in regulating floral transition is largely unknown. It is also not known which Mediator subunit mediates SPL10 transcriptional activity. Here, we used overexpression lines and knockout mutants to examine the role of SPL10 in flowering-time regulation and we investigated possible interactions of SPL10 with several mediator subunits in vitro and in vivo. Plants overexpressing SPL10 showed precocious flowering, whereas the triple loss-of-function mutants of SPL10 and its two homologous genes, SPL2 and SPL11, flowered late compared with wild-type plants. We found that SPL10 interacts with MED25, a subunit of the Mediator complex, which bridges transcription factors and RNA polymerase II to facilitate transcription initiation. Genetic analysis showed that MED25 acts downstream of SPL10 to execute SPL10-regulated floral transition. Furthermore, SPL10 was required for MED25 association with the promoters of two target genes, FUL and LFY. We provide evidence that SPL10 recruits MED25 to the promoters of target genes to regulate flowering time. Our results on the SPL10/MED25 module are relevant to the molecular mechanism of other SPL family members.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Proteínas de Unión al ADN/metabolismo , Flores/fisiología , Factores de Transcripción/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Unión al ADN/genética , Epistasis Genética , Flores/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Modelos Biológicos , Regiones Promotoras Genéticas , Unión Proteica , Factores de Tiempo , Factores de Transcripción/genética
18.
Genes Dev ; 25(1): 64-76, 2011 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-21156810

RESUMEN

The Agrobacterium Ti plasmid (T-DNA) 6b proteins interact with many different host proteins implicated in plant cell proliferation. Here, we show that Arabidopsis plants overexpressing 6b display microRNA (miRNA) deficiency by directly targeting SERRATE and AGO1 via a specific loop fragment (residues 40-55). In addition, we report the crystal structures of Agrobacterium tumefaciens AK6b at 2.1 Å, Agrobacterium vitis AB6b at 1.65 Å, and Arabidopsis ADP ribosylation factor (ARF) at 1.8 Å. The 6b structure adopts an ADP-ribosylating toxin fold closely related to cholera toxin. In vitro ADP ribosylation analysis demonstrates that 6b represents a new toxin family, with Tyr 66, Thr 93, and Tyr 153 as the ADP ribosylation catalytic residues in the presence of Arabidopsis ARF and GTP. Our work provides molecular insights, suggesting that 6b regulates plant cell growth by the disturbance of the miRNA pathway through its ADP ribosylation activity.


Asunto(s)
Arabidopsis/microbiología , Proteínas Bacterianas/metabolismo , ADN Bacteriano/metabolismo , Factores de Ribosilacion-ADP/química , Agrobacterium tumefaciens/metabolismo , Arabidopsis/citología , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Proteínas Argonautas , Proteínas Bacterianas/química , Toxinas Bacterianas/química , Toxinas Bacterianas/aislamiento & purificación , Toxinas Bacterianas/metabolismo , Proteínas de Unión al Calcio/metabolismo , Proliferación Celular , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas de la Membrana/metabolismo , MicroARNs/metabolismo , Proteínas de Unión al ARN , Proteínas Serrate-Jagged
19.
New Phytol ; 219(4): 1480-1491, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29862530

RESUMEN

Dispersed H3K27 trimethylation (H3K27me3) of the AGAMOUS (AG) genomic locus is mediated by CURLY LEAF (CLF), a component of the Polycomb Repressive Complex (PRC) 2. Previous reports have shown that the AG second intron, which confers AG tissue-specific expression, harbors sequences targeted by several positive and negative regulators. Using RACE reverse transcription polymerase chain reaction, we found that the AG intron 2 encodes several noncoding RNAs. RNAi experiment showed that incRNA4 is needed for CLF repressive activity. AG-incRNA4RNAi lines showed increased leaf AG mRNA levels associated with a decrease of H3K27me3 levels; these plants displayed AG overexpression phenotypes. Genetic and biochemical analyses demonstrated that the AG-incRNA4 can associate with CLF to repress AG expression in leaf tissues through H3K27me3-mediated repression and to autoregulate its own expression level. The mechanism of AG-incRNA4-mediated repression may be relevant to investigations on tissue-specific expression of Arabidopsis MADS-box genes.


Asunto(s)
Proteína AGAMOUS de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio/metabolismo , Intrones/genética , Hojas de la Planta/genética , ARN no Traducido/genética , Transcripción Genética , Proteína AGAMOUS de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas Co-Represoras/metabolismo , Flores/genética , Glucuronidasa/metabolismo , Histonas/metabolismo , Proteínas de Homeodominio/genética , Especificidad de Órganos/genética , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN no Traducido/metabolismo , Plantones/genética
20.
Plant Cell ; 27(7): 2016-31, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26163577

RESUMEN

MYC2 is an important regulator for jasmonic acid (JA) signaling, but little is known about its posttranslational regulation. Here, we show that the MYC2 C-terminal region interacted with the PLANT U-BOX PROTEIN10 (PUB10) armadillo repeats in vitro. MYC2 was efficiently polyubiquitinated by PUB10 with UBC8 as an E2 enzyme and the conserved C249 in PUB10 was required for activity. The inactive PUB10(C249A) mutant protein retained its ability to heterodimerize with PUB10, thus blocking PUB10 E3 activity as a dominant-negative mutant. Both MYC2 and PUB10 were nucleus localized and coimmunoprecipitation experiments confirmed their interaction in vivo. Although unstable in the wild type, MYC2 stability was enhanced in pub10, suggesting destabilization by PUB10. Moreover, MYC2 half-life was shortened or prolonged by induced expression of PUB10 or the dominant-negative PUB10(C249A) mutant, respectively. Root growth of pub10 seedlings phenocopied 35S:MYC2 seedlings and was hypersensitive to methyl jasmonate, whereas 35S:PUB10 and jin1-9 (myc2) seedlings were hyposensitive. In addition, the root phenotype conferred by MYC2 overexpression in double transgenic plants was reversed or enhanced by induced expression of PUB10 or PUB10(C249A), respectively. Similar results were obtained with three other JA-regulated genes, TAT, JR2, and PDF1.2. Collectively, our results show that MYC2 is targeted by PUB10 for degradation during JA responses.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Secuencia de Aminoácidos , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Ciclopentanos/farmacología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genotipo , Glucuronidasa/metabolismo , Semivida , Datos de Secuencia Molecular , Mutación/genética , Oxilipinas/farmacología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Plantas Modificadas Genéticamente , Poliubiquitina/metabolismo , Unión Proteica/efectos de los fármacos , Estabilidad Proteica/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA