Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Cell Proteomics ; 19(4): 730-743, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32071147

RESUMEN

Dynamic tyrosine phosphorylation is fundamental to a myriad of cellular processes. However, the inherently low abundance of tyrosine phosphorylation in the proteome and the inefficient enrichment of phosphotyrosine(pTyr)-containing peptides has led to poor pTyr peptide identification and quantitation, critically hindering researchers' ability to elucidate signaling pathways regulated by tyrosine phosphorylation in systems where cellular material is limited. The most popular approaches to wide-scale characterization of the tyrosine phosphoproteome use pTyr enrichment with pan-specific, anti-pTyr antibodies from a large amount of starting material. Methods that decrease the amount of starting material and increase the characterization depth of the tyrosine phosphoproteome while maintaining quantitative accuracy and precision would enable the discovery of tyrosine phosphorylation networks in rarer cell populations. To achieve these goals, the BOOST (Broad-spectrum Optimization Of Selective Triggering) method leveraging the multiplexing capability of tandem mass tags (TMT) and the use of pervanadate (PV) boost channels (cells treated with the broad-spectrum tyrosine phosphatase inhibitor PV) selectively increased the relative abundance of pTyr-containing peptides. After PV boost channels facilitated selective fragmentation of pTyr-containing peptides, TMT reporter ions delivered accurate quantitation of each peptide for the experimental samples while the quantitation from PV boost channels was ignored. This method yielded up to 6.3-fold boost in pTyr quantification depth of statistically significant data derived from contrived ratios, compared with TMT without PV boost channels or intensity-based label-free (LF) quantitation while maintaining quantitative accuracy and precision, allowing quantitation of over 2300 unique pTyr peptides from only 1 mg of T cell receptor-stimulated Jurkat T cells. The BOOST strategy can potentially be applied in analyses of other post-translational modifications where treatments that broadly elevate the levels of those modifications across the proteome are available.


Asunto(s)
Fosfoproteínas/metabolismo , Fosfotirosina/metabolismo , Proteoma/metabolismo , Proteómica , Espectrometría de Masas en Tándem , Vanadatos/metabolismo , Humanos , Iones , Células Jurkat , Fosfopéptidos/metabolismo
2.
J Proteome Res ; 20(6): 3330-3344, 2021 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-34018748

RESUMEN

Activation of the T cell receptor (TCR) leads to a network of early signaling predominantly orchestrated by tyrosine phosphorylation in T cells. The TCR is commonly activated using soluble anti-TCR antibodies, but this approach is not antigen-specific. Alternatively, activating the TCR using specific antigens of a range of binding affinities in the form of a peptide-major histocompatibility complex (pMHC) is presumed to be more physiological. However, due to the lack of wide-scale phosphotyrosine (pTyr) proteomic studies directly comparing anti-TCR antibodies and pMHC, a comprehensive definition of these activated states remains enigmatic. Elucidation of the tyrosine phosphoproteome using quantitative pTyr proteomics enables a better understanding of the unique features of these activating agents and the role of ligand binding affinity on signaling. Here, we apply the recently established Broad-spectrum Optimization Of Selective Triggering (BOOST) to examine perturbations in tyrosine phosphorylation of human TCR triggered by anti-TCR antibodies and pMHC. Our data reveal that high-affinity ovalbumin (OVA) pMHC activation of the human TCR triggers a largely similar, albeit potentially stronger, pTyr-mediated signaling regulatory axis compared to the anti-TCR antibody. The signaling output resulting from OVA pMHC variants correlates well with their weaker affinities, enabling affinity-tunable control of signaling strength. Collectively, we provide a framework for applying BOOST to compare pTyr-mediated signaling pathways of human T cells activated in an antigen-independent and antigen-specific manner.


Asunto(s)
Proteómica , Receptores de Antígenos de Linfocitos T , Antígenos , Humanos , Activación de Linfocitos , Ovalbúmina , Fosfotirosina , Unión Proteica
3.
J Proteome Res ; 20(1): 715-726, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33185455

RESUMEN

While Lck has been widely recognized to play a pivotal role in the initiation of the T cell receptor (TCR) signaling pathway, an understanding of the precise regulation of Lck in T cells upon TCR activation remains elusive. Investigation of protein-protein interaction (PPI) using proximity labeling techniques such as TurboID has the potential to provide valuable molecular insights into Lck regulatory networks. By expressing Lck-TurboID in Jurkat T cells, we have uncovered a dynamic, short-range Lck protein interaction network upon 30 min of TCR stimulation. In this novel application of TurboID, we detected 27 early signaling-induced Lck-proximal interactors in living T cells, including known and novel Lck interactors, validating the discovery power of this tool. Our results revealed previously unappreciated Lck PPI which may be associated with cytoskeletal rearrangement, ubiquitination of TCR signaling proteins, activation of the mitogen-activated protein kinase cascade, coalescence of the LAT signalosome, and formation of the immunological synapse. In this study, we demonstrated for the first time in immune cells and for the kinase Lck that TurboID can be utilized to unveil PPI dynamics in living cells at a time scale consistent with early TCR signaling. Data are available via ProteomeXchange with identifier PXD020759.


Asunto(s)
Proteína Tirosina Quinasa p56(lck) Específica de Linfocito , Receptores de Antígenos de Linfocitos T , Comunicación Celular , Humanos , Células Jurkat , Proteína Tirosina Quinasa p56(lck) Específica de Linfocito/genética , Proteína Tirosina Quinasa p56(lck) Específica de Linfocito/metabolismo , Fosforilación , Receptores de Antígenos de Linfocitos T/genética , Transducción de Señal
4.
Plant J ; 84(4): 647-58, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26406904

RESUMEN

Biogenesis of chloroplasts involves a series of protein trafficking events. Nuclear-encoded proteins are imported into the organelle, and then trafficked to various chloroplast locations by systems that are directly homologous to bacterial systems. Although the thylakoid-based systems have been studied extensively, much less is known about the systems that reside and function in the inner envelope membrane. One such system, the Sec2 system, is homologous to both the thylakoid-based Sec1 system and bacterial Sec systems, and may mediate both integration and translocation across the inner envelope. At a minimum, this system is expected to include three components, but only two, SCY2 and SECA2, have been identified in Arabidopsis. Bioinformatics and protein modeling were used to identify the protein encoded by At4g38490 as a candidate for the missing component (SECE2). Cellular localization, biochemistry, protein interaction assays in yeast, and co-immunoprecipitation experiments were used to establish that this protein is an integral membrane protein of the inner envelope, and specifically interacts with the SCY2 component in vivo. Sequence analyses indicated that SECE2 proteins are found in a variety of plants, and differ from the thylakoid SECE1 proteins in a stroma-exposed helical domain, which may contribute to their specificity. Finally, a genetic analysis indicated that SECE2 plays an essential role in plant growth and development.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Proteínas de Cloroplastos/metabolismo , Cloroplastos/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Tilacoides/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Cloroplastos/genética , Cloroplastos/genética , Immunoblotting , Proteínas de la Membrana/genética , Proteínas de Transporte de Membrana/genética , Microscopía Confocal , Datos de Secuencia Molecular , Plantas Modificadas Genéticamente , Unión Proteica , Transporte de Proteínas , Canales de Translocación SEC , Homología de Secuencia de Aminoácido , Tilacoides/genética , Técnicas del Sistema de Dos Híbridos
5.
Protein Sci ; 31(5): e4306, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35481648

RESUMEN

The essential bacterial division protein in Escherichia coli, FtsZ, assembles into the FtsZ-ring at midcell and recruits other proteins to the division site to promote septation. A region of the FtsZ amino acid sequence that links the conserved polymerization domain to a C-terminal protein interaction site was predicted to be intrinsically disordered and has been implicated in modulating spacing and architectural arrangements of FtsZ filaments. While the majority of cell division proteins that directly bind to FtsZ engage either the polymerization domain or the C-terminal interaction site, ClpX, the recognition and unfolding component of the bacterial ClpXP proteasome, has a secondary interaction with the predicted intrinsically disordered region (IDR) of FtsZ when FtsZ is polymerized. Here, we use NMR spectroscopy and reconstituted degradation reactions in vitro to demonstrate that this linker region is indeed disordered in solution and, further, that amino acids in the IDR of FtsZ enhance the degradation in polymer-guided interactions.


Asunto(s)
Proteínas de Escherichia coli , Péptido Hidrolasas , Proteínas Bacterianas/química , Proteínas del Citoesqueleto/metabolismo , Endopeptidasa Clp/genética , Endopeptidasa Clp/metabolismo , Elementos de Facilitación Genéticos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Péptido Hidrolasas/metabolismo , Polímeros/metabolismo
6.
Elife ; 82019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30618376

RESUMEN

Transcriptional pausing underlies regulation of cellular RNA biogenesis. A consensus pause sequence that acts on RNA polymerases (RNAPs) from bacteria to mammals halts RNAP in an elemental paused state from which longer-lived pauses can arise. Although the structural foundations of pauses prolonged by backtracking or nascent RNA hairpins are recognized, the fundamental mechanism of the elemental pause is less well-defined. Here we report a mechanistic dissection that establishes the elemental pause signal (i) is multipartite; (ii) causes a modest conformational shift that puts γ-proteobacterial RNAP in an off-pathway state in which template base loading but not RNA translocation is inhibited; and (iii) allows RNAP to enter pretranslocated and one-base-pair backtracked states easily even though the half-translocated state observed in paused cryo-EM structures rate-limits pause escape. Our findings provide a mechanistic basis for the elemental pause and a framework to understand how pausing is modulated by sequence, cellular conditions, and regulators.


Asunto(s)
Transcripción Genética , Emparejamiento Base/genética , Secuencia de Bases , Secuencia de Consenso/genética , ADN/genética , Cinética , Mutación/genética , Nucleótidos/metabolismo , ARN/genética , Moldes Genéticos , Elongación de la Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA