RESUMEN
BACKGROUND: The spinal hybrid elastic (SHE) rod dynamic stabilization system can provide sufficient spine support and less adjacent segment stress. This study aimed to investigate the biomechanical effects after the internal fracture of SHE rods using finite element analysis. METHODS: A three-dimensional nonlinear finite element model was developed. The SHE rod comprises an inner nitinol stick (NS) and an outer polycarbonate urethane (PCU) shell (PS). The fracture was set at the caudal third portion of the NS, where the maximum stress occurred. The resultant intervertebral range of motion (ROM), intervertebral disc stress, facet joint contact force, screw stress, NS stress, and PCU stress were analyzed. RESULTS: When compared with the intact spine model, the overall trend was that the ROM, intervertebral disc stress, and facet joint force decreased in the implanted level and increased in the adjacent level. When compared with the Ns-I, the trend in the Ns-F decreased and remained nearly half effect. Except for torsion, the PS stress of the Ns-F increased because of the sharing of NS stress after the NS fracture. CONCLUSIONS: The study concluded the biomechanical effects still afford nearly sufficient spine support and gentle adjacent segment stress after rod fracture in a worst-case scenario of the thinnest PS of the SHE rod system.
Asunto(s)
Fusión Vertebral , Fenómenos Biomecánicos , Tornillos Óseos , Análisis de Elementos Finitos , Humanos , Vértebras Lumbares/diagnóstico por imagen , Vértebras Lumbares/cirugía , Rango del Movimiento Articular , Fusión Vertebral/métodosRESUMEN
Introduction: There are various surgical interventions to manage osteoporotic vertebral compression fracture. Modular spine block (MSB) is a novel intravertebral fixator that can be assembled. This study aimed to quantitatively investigate the force distribution in vertebrae with the various structural designs and implantation methods by finite element analysis (FEA). Methods: A three-dimensional nonlinear FEA of the L3 implanted with MSB was constructed. Different structural designs (solid vs. hollow) and implantation methods (three-layered vs. six-layered and unilateral vs. bilateral) were studied. The model was preloaded to 150 N-m before the effects of flexion, extension, torsion, and lateral bending were analyzed at the controlled ranges of motion of 20°, 15°, 8°, and 20°, respectively. The resultant intervertebral range of motion (ROM) and disk stress as well as intravertebral force distribution were analyzed at the adjacent segments. Results: The different layers of MSB provided similar stability at the adjacent segments regarding the intervertebral ROM and disk stress. Under stress tests, the force of the solid MSB was shown to be evenly distributed within the vertebrae. The maximum stress value of the unilaterally three-layered hollow MSB was generally lower than that of the bilaterally six-layered solid MSB. Conclusions: The MSB has little stress shielding effect on the intervertebral ROM and creates no additional loading to the adjacent disks. The surgeon can choose the appropriate numbers of MSB to fix vertebrae without worrying about poly(methyl methacrylate) extravasation, implant failure, or adjacent segment disease.