RESUMEN
Achieving a narrow emission bandwidth is long pursued for display applications. Among all primary colors, obtaining pure red emission with high visual perception is the most challenging. In this work, CsPbI3 halide perovskite nanoplatelets (NPLs) with rigorously controlled 2D [PbI6]4- octahedron layer number (n) are demonstrated. A perovskite core-PbSO4 shell structure is designed to prevent aggregation and fusion between NPLs, enabling consistent thickness and quantum confinement strength for each NPL. Consequently, exact n = 4 CsPbI3 NPLs are demonstrated, exhibiting emission peaks around 630 nm, with very narrow spectral bandwidths of <24 nm and high absolute photoluminescence quantum yields up to 85%. The emission of n = 4 NPLs falls exactly within the pure-red region, closely aligning with the International Telecommunication Union Recommendation BT.2020 standard. Measurements suggest predominant stability and color homogeneity compared to traditional red-emitting CsPbIxBr3- x nanocrystals. Finally, proof-of-concept pure-red emissive light-emitting diodes (LEDs) are demonstrated by integrating n = 4 CsPbI3 NPLs films with a blue LED chip, showing an excellent external quantum efficiency of 18.3% and high brightness exceeding 3 × 106 nits. Stringent requirements for future display technologies, are satisfied based on the high color purity, stability, and brightness of CsPbI3 NPLs.
RESUMEN
The phosphor-converted light-emitting diode (PC-LED) has become an indispensable solid-state lighting and display technologies in the modern society. Nevertheless, the use of scarce rare-earth elements and the thermal quenching (TQ) behavior are still two most crucial issues yet to be solved. Here, this work successfully demonstrates a highly efficient and thermally stable green emissive MnI2 (XanPO) crystals showing a notable photoluminescence quantum yield (PLQY) of 94% and a super TQ resistance from 4 to 623 K. This unprecedented superior thermal stability is attributed to the low electron-phonon coupling and the unique rigid crystal structure of MnI2 (XanPO) over the whole temperature range based on the temperature-dependent photoluminescence (PL) and single crystal X-ray diffraction (SCXRD) analyses. Considering these appealing properties, green PC-LEDs with a power efficacy of 102.5 lm W-1 , an external quantum efficiency (EQE) of 22.7% and a peak luminance up to 7750 000 cd m-2 are fabricated by integrating MnI2 (XanPO) with commercial blue LEDs. Moreover, the applicability of MnI2 (XanPO) in both micro-LEDs and organic light-emitting diodes (OLEDs) is also demonstrated. In a nutshell, this study uncovers a candidate of highly luminescent and TQ resistant manganese halide suitable for a variety of emission applications.
RESUMEN
Highly emissive semiconductor nanocrystals, or so-called quantum dots (QDs) possess a variety of applications from displays and biology labeling, to quantum communication and modern security. Though ensembles of QDs have already shown very high photoluminescent quantum yields (PLQYs) and have been widely utilized in current optoelectronic products, QDs that exhibit high absorption cross-section, high emission intensity, and, most important, nonblinking behavior at single-dot level have long been desired and not yet realized at room temperature. In this work, infrared-emissive MAPbI3 -based halide perovskite QDs is demonstrated. These QDs not only show a ≈100% PLQY at the ensemble level but also, surprisingly, at the single-dot level, display an extra-large absorption cross-section up to 1.80 × 10-12 cm2 and non-blinking single photon emission with a high single photon purity of 95.3%, a unique property that is extremely rare among all types of quantum emitters operated at room temperature. An in-depth analysis indicates that neither trion formation nor band-edge carrier trapping is observed in MAPbI3 QDs, resulting in the suppression of intensity blinking and lifetime blinking. Fluence-dependent transient absorption measurements reveal that the coexistence of non-blinking behavior and high single photon purity in these perovskite QDs results from a significant repulsive exciton-exciton interaction, which suppresses the formation of biexciton, and thus greatly reduces photocharging. The robustness of these QDs is confirmed by their excellent stability under continuous 1 h electron irradiation in high-resolution transmission electron microscope inspection. It is believed that these results mark an important milestone in realizing nonblinking single photon emission in semiconductor QDs.
RESUMEN
Although vacuum-deposited metal halide perovskite light-emitting diodes (PeLEDs) have great promise for use in large-area high-color-gamut displays, the efficiency of vacuum-sublimed PeLEDs currently lags that of solution-processed counterparts. In this study, highly efficient vacuum-deposited PeLEDs are prepared through a process of optimizing the stoichiometric ratio of the sublimed precursors under high vacuum and incorporating ultrathin under- and upper-layers for the perovskite emission layer (EML). In contrast to the situation in most vacuum-deposited organic light-emitting devices, the properties of these perovskite EMLs are highly influenced by the presence and nature of the upper- and presublimed materials, thereby allowing us to enhance the performance of the resulting devices. By eliminating Pb° formation and passivating defects in the perovskite EMLs, the PeLEDs achieve an outstanding external quantum efficiency (EQE) of 10.9% when applying a very smooth and flat geometry; it reaches an extraordinarily high value of 21.1% when integrating a light out-coupling structure, breaking through the 10% EQE milestone of vacuum-deposited PeLEDs.
RESUMEN
Highly sensitive X-ray detection is crucial in, for example, medical imaging and secure inspection. Halide perovskite X-ray detectors are promising candidates for detecting highly energetic radiation. In this report, we describe vacuum-deposited Cs-based perovskite X-ray detectors possessing a p-i-n architecture. Because of the built-in potential of the p-i-n structure, these perovskite X-ray detectors were capable of efficient charge collection and displayed an exceptionally high X-ray sensitivity (1.2 C Gyair-1 cm-3) under self-powered, zero-bias conditions. We ascribe the outstanding X-ray sensitivity of the vacuum-deposited CsPbI2Br devices to their prominent charge carrier mobility. Moreover, these devices functioned with a lowest detection limit of 25.69 nGyair s-1 and possessed excellent stability after exposure to over 3000 times the total dose of a chest X-ray image. For comparison, we also prepared traditional spin-coated CH3NH3-based perovskite devices having a similar device architecture. Their volume sensitivity was only one-fifth of that of the vacuum-deposited CsPbI2Br devices. Thus, all-vacuum deposition appears to be a new strategy for developing perovskite X-ray detectors; with a high practical deposition rate, a balance can be reached between the thickness of the absorbing layer and the fabrication time.
RESUMEN
Recently, conductive-bridging memristors based on metal halides, such as halide perovskites, have been demonstrated as promising components for brain-inspired hardware-based neuromorphic computing. However, realizing devices that simultaneously fulfill all of the key merits (low operating voltage, high dynamic range, multilevel nonvolatile storage capability, and good endurance) remains a great challenge. Herein, we describe lead-free cesium halide memristors incorporating a MoOX interfacial layer as a type of conductive-bridging memristor. With this design, we obtained highly uniform and reproducible memristors that exhibited all-around resistive switching characteristics: ultralow operating voltages (<0.18 V), low variations (<30 mV), long retention times (>106 s), high endurance (>105, full on/off cycles), record-high on/off ratios (>1010, smaller devices having areas <5 × 10-4 mm2), fast switching (<200 ns), and multilevel programming abilities (>64 states). With these memristors, we successfully implemented stateful logic functions in a reconfigurable architecture and accomplished a high classification accuracy (ca. 90%) in the simulated hand-written-digits classification task, suggesting their versatility in future in-memory computing applications. In addition, we exploited the room-temperature fabrication of the devices to construct a fully functional three-dimensional stack of memristors, which demonstrates their potential of high-density integration desired for data-intensive neuromorphic computing. High-performance, environmentally friendly cesium halide memristors provide opportunities toward next-generation electronics beyond von Neumann architectures.
RESUMEN
Although colloidal lead halide perovskite quantum dots (PQDs) exhibit desirable emitter characteristics with high quantum yields and narrow bandwidths, instability has limited their applications in devices. In this paper, we describe spray-synthesized CsPbI3 PQD quantum emitters displaying strong photon antibunching and high brightness at room temperature and stable performance under continuous excitation with a high-intensity laser for more than 24 h. Our PQDs provided high single-photon emission rates, exceeding 9 × 106 count/s, after excluding multiexciton emissions and strong photon antibunching, as confirmed by low values of the second-order correlation function g(2)(0) (reaching 0.021 and 0.061 for the best and average PQD performance, respectively). With such high brightness and stability, we applied our PQDs as quantum random number generators, which demonstrably passed all of the National Institute of Standards and Technology's randomness tests. Intriguingly, all of the PQDs exhibited self-healing behavior and restored their PL intensities to greater than half of their initial values after excitation at extremely high intensity. Half of the PQDs even recovered almost all of their initial PL intensity. The robust properties of these spray-synthesized PQDs resulted from high crystallinity and good ligand encapsulation. Our results suggest that spray-synthesized PQDs have great potential for use in future quantum technologies (e.g., quantum communication, quantum cryptography, and quantum computing).
RESUMEN
This paper reports packing-shape effects of amplified spontaneous emission (ASE) through orbital polarization dynamics between light-emitting excitons by stacking perovskite (MAPbBr3) quantum dots (QDs sized between 10 nm and 14 nm) into rod-like and diamond-like aggregates. The rod-like packing shows a prolonged photoluminescence (PL) lifetime (184 ns) with 3 nm red-shifted peak (525 nm) as compared to the diamond-like packing (PL peak, 522 nm; lifetime, 19 ns). This indicates that the rod-like packing forms a stronger interaction between QDs with reduced surface-charged defects, leading to surface-to-inside property-tuning capability with an ASE. Interestingly, the ASE enabled by rod-like packing shows an orbit-orbit polarization interaction between light-emitting excitons, identified by linearly/circularly polarized pumping conditions. More importantly, the polarization dynamics is extended to the order of nanoseconds in the rod-like assembly, determined by the observation that within the ASE lifetime (2.54 ns) the rotating pumping beam polarization direction largely affects the coherent interaction between light-emitting excitons.
RESUMEN
The most attractive aspect of perovskite nanocrystals (NCs) for optoelectronic applications is their widely tunable emission wavelength, but it has been quite challenging to tune it without sacrificing the photoluminescence quantum yield (PLQY). In this work, we report a facile ligand-optimized ion-exchange (LOIE) method to convert room-temperature spray-synthesized, perovskite parent NCs that emit a saturated green color to NCs capable of emitting colors across the entire visible spectrum. These NCs exhibited exceptionally stable and high PLQYs, particularly for the pure blue (96%) and red (93%) primary colors that are indispensable for display applications. Surprisingly, the blue- and red-emissive NCs obtained using the LOIE method preserved the cubic shape and cubic phase structure that they inherited from their parent NCs, while exhibiting high crystallinity and high color-purity. Together with the parent green-emissive NCs, the obtained blue- and red-emissive NCs provided a very wide color gamut, corresponding to a Digital Cinema Initiatives-P3 of 140% or an International Telecommunication Union Recommendation BT.2020 of 102%. With the superior optical merits of these LOIE-manipulated NCs, a corresponding color conversion luminescence device provided a high external quantum efficiency (10.5%) and extremely high brightness (970â¯000 cd/m2). This study provides a valid route toward highly stable, extremely emissive, and panchromatic perovskite NCs with potential use in a variety of future optoelectronic applications.