RESUMEN
The health benefits of young barley leaves, rich in dietary fiber, have been studied for several decades; however, their beneficial effects on the intestinal microenvironment remain to be elucidated. To investigate the effects of young barley leaf-derived dietary fiber (YB) on the gut microbiota and immunity, mice were fed an AIN-93G diet containing cellulose or YB and subjected to subsequent analysis. The population of MHC-II-positive conventional dendritic cells (cDCs) and CD86 expression in the cDCs of Peyer's patches were elevated in the YB-fed mice. MHC-II and CD86 expression was also elevated in the bone marrow-derived DCs treated with YB. 16S-based metagenomic analysis revealed that the gut microbiota composition was markedly altered by YB feeding. Among the gut microbiota, Lachnospiraceae, mainly comprising butyrate-producing NK4A136 spp., were overrepresented in the YB-fed mice. In fact, fecal butyrate concentration was also augmented in the YB-fed mice, which coincided with increased retinaldehyde dehydrogenase (RALDH) activity in the CD103+ cDCs of the mesenteric lymph nodes. Consistent with elevated RALDH activity, the population of colonic IgA+ plasma cells was higher in the YB-fed mice than in the parental control mice. In conclusion, YB has beneficial effects on the gut microbiota and intestinal immune system.
Asunto(s)
Fibras de la Dieta , Microbioma Gastrointestinal , Hordeum , Hojas de la Planta , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Hordeum/química , Fibras de la Dieta/farmacología , Hojas de la Planta/química , Ratones , Retinal-Deshidrogenasa/metabolismo , Butiratos/metabolismo , Heces/microbiologíaRESUMEN
The health benefits of wheat-derived arabinoxylan, a commonly consumed dietary fiber, have been studied for decades. However, its effect on the gut microenvironment and inflammatory bowel disease remains unclear. The objective of this study was to understand the effect of wheat-derived arabinoxylan on gut microbiota, colonic regulatory T cells (Tregs), and experimental colitis. In this study, healthy and chronic colitis model mice were fed chow containing cellulose or wheat-derived arabinoxylan for 2-6 weeks and subjected to subsequent analysis. A 16S-based metagenomic analysis of the fecal DNA revealed that Lachnospiraceae, comprising butyrate-producing and Treg-inducing bacteria, were overrepresented in arabinoxylan-fed mice. In line with the changes in the gut microbiota, both the fecal butyrate concentration and the colonic Treg population were elevated in the arabinoxylan-fed mice. In a T cell transfer model of chronic colitis, wheat-derived arabinoxylan ameliorated body weight loss and colonic tissue inflammation, which may, in part, be mediated by Treg induction. Moreover, wheat-derived arabinoxylan suppressed TNFα production from type 1 helper T cells in this colitis model. In conclusion, wheat-derived arabinoxylans, by altering the gut microenvironment, may be a promising prebiotic for the prevention of colitis.
Asunto(s)
Colitis , Microbioma Gastrointestinal , Animales , Ratones , Linfocitos T Reguladores , Triticum , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/metabolismo , Butiratos/farmacología , Ratones Endogámicos C57BLRESUMEN
Soluble oat fibers, including ß-glucan, have been shown to alter the gut microbiome composition and ameliorate DSS-induced colitis; however, the beneficial effect of soluble oat fiber on colonic inflammation is not yet fully understood. In this study, we demonstrated that soluble oat fibers ameliorate T cell-dependent colitis through the induction of peripherally induced regulatory T cells (pTregs). Soluble oat fibers elevated colonic butyrate production dose-dependently, which coincided with the overrepresentation of Faecalibaculum rodentium (an analog of butyrate-producing Holdemanella biformis) in the gut microbiome. Soluble oat fibers promoted the growth of F. rodentium and H. biformis even in vitro, and increased the concentration of butyrate in the culture supernatant. These results indicate that soluble oat fibers are an energy source for butyrate-producing bacteria and are a fermentation substrate. Soluble oat fibers increased the percentage of colonic pTregs and ameliorated the weight loss and inflammation in acute 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis; this may in part be mediated by the increase in IL-10-producing T cells. In conclusion, our results suggest that the administration of soluble oat fibers is a promising prebiotic treatment for the prevention of colitis mediated via altered gut microbiota composition and elevated butyrate production.
Asunto(s)
Avena , Colitis , Animales , Ácido Trinitrobencenosulfónico , Avena/química , Colitis/microbiología , Butiratos , Inflamación , Modelos Animales de EnfermedadRESUMEN
Polyethylene glycol (PEG) is a commonly used dispersant for oral administration of hydrophobic agents. PEG is partly absorbed in the small intestine, and the unabsorbed fraction reaches the large intestine; thus, oral administration of PEG may impact the gut microbial community. However, to the best of our knowledge, no study evaluated the effects of PEG on gut commensal bacteria. Herein, we aimed to determine whether oral administration of PEG modifies the gut microbiota. Administration of PEG400 and PEG4000 altered gut microbial diversity in a concentration-dependent manner. Taxonomic analysis revealed that Akkermansia muciniphila and particularly Parabacteroides goldsteinii were overrepresented in mice administered with 40% PEG. PEG400 administration ameliorated the high-fat diet (HFD)-induced obesity and adipose tissue inflammation. Fecal microbiome transplantation from PEG400-administered donors counteracted the HFD-induced body and epididymal adipose tissue weight gain, indicating that PEG400-associated bacteria are responsible for the anti-obesity effect. Conversely, carboxymethyl cellulose, also used as a dispersant, did not affect the abundance of these two bacterial species or HFD-induced obesity. In conclusion, we demonstrated that oral administration of a high concentration of PEG400 (40%) alters the gut microbiota composition and ameliorates HFD-induced obesity.
RESUMEN
SCOPE: The purpose of this study is to compare the impact of four low-viscosity soluble dietary fibers (DFs) on the intestinal microenvironment, in terms of microbiota composition, short-chain fatty acid (SCFA) production, proportion of colonic peripherally induced regulatory T cells (pTregs), and experimental colitis in mice. METHODS AND RESULTS: Mice are administered 5% w/v low-viscosity soluble DFs in drinking water for 2 weeks. The gut microbiota composition is determined using 16S rRNA sequencing. Luminal SCFAs are quantified by gas chromatography, and colonic pTregs are analyzed using flow cytometry. All low-viscosity soluble DFs promote the growth of beneficial bacteria such as Akkermansia muciniphila and Bacteroides acidifaciens, while eliminating pathogenic bacteria such as Clostridium perfringens. Moreover, two low-viscosity soluble DFs significantly increase the abundance of commensal bacteria and promote the accumulation of propionate and butyrate, leading to marked induction of colonic pTregs. Consistently, these two fibers, in particular α-cyclodextrin, show remarkable anti-inflammatory properties in a colitis mouse model. CONCLUSION: Mice administered any low-viscosity soluble DF show comparable gut microbiota compositions, but differ in terms of bacterial abundance, SCFA concentration, pTreg population, and colitis development. This exploratory study suggests that administration of α-cyclodextrin may be a possible strategy for the prevention of colitis.