Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell ; 162(2): 391-402, 2015 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-26186192

RESUMEN

Many mutations cause genetic disorders. However, two people inheriting the same mutation often have different severity of symptoms, and this is partly genetic. The effects of genetic background on mutant phenotypes are poorly understood, but predicting them is critical for personalized medicine. To study this phenomenon comprehensively and systematically, we used RNAi to compare loss-of-function phenotypes for ∼1,400 genes in two isolates of C. elegans and find that ∼20% of genes differ in the severity of phenotypes in these two genetic backgrounds. Crucially, this effect of genetic background on the severity of both RNAi and mutant phenotypes can be predicted from variation in the expression levels of the affected gene. This is also true in mammalian cells, suggesting it is a general property of genetic networks. We suggest that differences in the manifestation of mutant phenotypes between individuals are largely the result of natural variation in gene expression.


Asunto(s)
Caenorhabditis elegans/genética , Mutación , Animales , Caenorhabditis elegans/clasificación , Técnicas de Silenciamiento del Gen , Variación Genética , Fenotipo , Interferencia de ARN
2.
Cell ; 148(4): 792-802, 2012 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-22341449

RESUMEN

Almost all eukaryotic genes are conserved, suggesting that they have essential functions. However, only a minority of genes have detectable loss-of-function phenotypes in experimental assays, and multiple theories have been proposed to explain this discrepancy. Here, we use RNA-mediated interference in C. elegans to examine how knockdown of any gene affects the overall fitness of worm populations. Whereas previous studies typically assess phenotypes that are detectable by eye after a single generation, we monitored growth quantitatively over several generations. In contrast to previous estimates, we find that, in these multigeneration population assays, the majority of genes affect fitness, and this suggests that genetic networks are not robust to mutation. Our results demonstrate that, in a single environmental condition, most animal genes play essential roles. This is a higher proportion than for yeast genes, and we suggest that the source of negative selection is different in animals and in unicellular eukaryotes.


Asunto(s)
Caenorhabditis elegans/genética , Redes Reguladoras de Genes , Aptitud Genética , Animales , Escherichia coli/genética , Fenotipo , Interferencia de ARN
3.
J Bacteriol ; 190(19): 6448-57, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18689470

RESUMEN

Upon induction, Bacillus megaterium 216 produces the bacteriocin megacin A-216, which leads to lysis of the producer cell and kills B. megaterium and a few other bacterial species. The DNA region responsible for megacinogeny was cloned in B. megaterium. The nucleotide sequence of a 5,494-bp-long subfragment was determined, and the function of the genes on this fragment was studied by generating deletions and analyzing their effects on MegA phenotypes. An open reading frame (ORF) encoding a 293-amino-acid protein was identified as the gene (megA) coding for megacin A-216. BLAST searches detected sequence similarity between megacin A-216 and proteins with phospholipase A2 activity. Purified biologically active megacin A-216 preparations contained three proteins. Mass spectrometry analysis showed that the largest protein is the full-length translation product of the megA gene, whereas the two shorter proteins are fragments of the long protein created by cleavage between Gln-185 and Val-186. The molecular masses of the three polypeptides are 32,855, 21,018, and 11,855 Da, respectively. Comparison of different megacin preparations suggests that the intact chain as well as the two combined fragments can form biologically active megacin. An ORF located next to the megA gene and encoding a 91-amino-acid protein was shown to be responsible for the relative immunity displayed by the producer strain against megacin A-216. Besides the megA gene, at least two other genes, including a gene encoding a 188-amino-acid protein sharing high sequence similarity with RNA polymerase sigma factors, were shown to be required for induction of megacin A-216 expression.


Asunto(s)
Bacillus megaterium/genética , Bacillus megaterium/metabolismo , ADN Bacteriano/genética , Megacinas/biosíntesis , Cromatografía en Gel , Clonación Molecular , ADN Bacteriano/química , Electroforesis en Gel de Poliacrilamida , Modelos Genéticos , Datos de Secuencia Molecular , Sistemas de Lectura Abierta/genética , Análisis de Secuencia de ADN , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
4.
Biochim Biophys Acta ; 1774(5): 583-94, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17442645

RESUMEN

To test their structural and functional similarity, hybrids were constructed between EcoRI and RsrI, two restriction endonucleases recognizing the same DNA sequence and sharing 50% amino acid sequence identity. One of the chimeric proteins (EERE), in which the EcoRI segment His147-Ala206 was replaced with the corresponding RsrI segment, showed EcoRI/RsrI-specific endonuclease activity. EERE purified from inclusion bodies was found to have approximately 100-fold weaker activity but higher specific DNA binding affinity, than EcoRI. Increased binding is consistent with results of molecular dynamics simulations, which indicate that the number of hydrogen bonds formed with the recognition sequence increased in the chimera as compared to EcoRI. The success of obtaining an EcoRI-RsrI hybrid endonuclease, which differs from EcoRI by 22 RsrI-specific amino acid substitutions and still preserves canonical cleavage specificity, is a sign of structural and functional similarity shared by the parental enzymes. This conclusion is also supported by computational studies, which indicate that construction of the EERE chimera did not induce substantial changes in the structure of EcoRI. Surprisingly, the chimeric endonuclease was more toxic to cells not protected by EcoRI methyltransferase, than the parental EcoRI mutant. Molecular modelling revealed structural alterations, which are likely to impede coupling between substrate recognition and cleavage and suggest a possible explanation for the toxic phenotype.


Asunto(s)
Desoxirribonucleasa EcoRI/metabolismo , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/metabolismo , Secuencia de Bases , Cartilla de ADN , Desoxirribonucleasa EcoRI/química , Enlace de Hidrógeno , Modelos Moleculares , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/química , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA