Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Breast Cancer Res ; 17: 72, 2015 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-26013572

RESUMEN

INTRODUCTION: Non-invasive diffuse optical tomography (DOT) and diffuse correlation spectroscopy (DCS) can detect and characterize breast cancer and predict tumor responses to neoadjuvant chemotherapy, even in patients with radiographically dense breasts. However, the relationship between measured optical parameters and pathological biomarker information needs to be further studied to connect information from optics to traditional clinical cancer biology. Thus we investigate how optically measured physiological parameters in malignant tumors such as oxy-, deoxy-hemoglobin concentration, tissue blood oxygenation, and metabolic rate of oxygen correlate with microscopic histopathological biomarkers from the same malignant tumors, e.g., Ki67 proliferation markers, CD34 stained vasculature markers and nuclear morphology. METHODS: In this pilot study, we investigate correlations of macroscopic physiological parameters of malignant tumors measured by diffuse optical technologies with microscopic histopathological biomarkers of the same tumors, i.e., the Ki67 proliferation marker, the CD34 stained vascular properties marker, and nuclear morphology. RESULTS: The tumor-to-normal relative ratio of Ki67-positive nuclei is positively correlated with DOT-measured relative tissue blood oxygen saturation (R = 0.89, p-value: 0.001), and lower tumor-to-normal deoxy-hemoglobin concentration is associated with higher expression level of Ki67 nuclei (p-value: 0.01). In a subset of the Ki67-negative group (defined by the 15 % threshold), an inverse correlation between Ki67 expression level and mammary metabolic rate of oxygen was observed (R = -0.95, p-value: 0.014). Further, CD34 stained mean-vessel-area in tumor is positively correlated with tumor-to-normal total-hemoglobin and oxy-hemoglobin concentration. Finally, we find that cell nuclei tend to have more elongated shapes in less oxygenated DOT-measured environments. CONCLUSIONS: Collectively, the pilot data are consistent with the notion that increased blood is supplied to breast cancers, and it also suggests that less conversion of oxy- to deoxy-hemoglobin occurs in more proliferative cancers. Overall, the observations corroborate expectations that macroscopic measurements of breast cancer physiology using DOT and DCS can reveal microscopic pathological properties of breast cancer and hold potential to complement pathological biomarker information.


Asunto(s)
Biomarcadores de Tumor , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Neovascularización Patológica , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/tratamiento farmacológico , Proliferación Celular , Femenino , Humanos , Antígeno Ki-67/metabolismo , Metabolómica/métodos , Microscopía Fluorescente , Imagen Óptica/métodos , Consumo de Oxígeno , Proyectos Piloto , Análisis Espectral/métodos
2.
J Biomed Opt ; 24(2): 1-11, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30338678

RESUMEN

Ideally, neoadjuvant chemotherapy (NAC) assessment should predict pathologic complete response (pCR), a surrogate clinical endpoint for 5-year survival, as early as possible during typical 3- to 6-month breast cancer treatments. We introduce and demonstrate an approach for predicting pCR within 10 days of initiating NAC. The method uses a bedside diffuse optical spectroscopic imaging (DOSI) technology and logistic regression modeling. Tumor and normal tissue physiological properties were measured longitudinally throughout the course of NAC in 33 patients enrolled in the American College of Radiology Imaging Network multicenter breast cancer DOSI trial (ACRIN-6691). An image analysis scheme, employing z-score normalization to healthy tissue, produced models with robust predictions. Notably, logistic regression based on z-score normalization using only tissue oxygen saturation (StO2) measured within 10 days of the initial therapy dose was found to be a significant predictor of pCR (AUC = 0.92; 95% CI: 0.82 to 1). This observation suggests that patients who show rapid convergence of tumor tissue StO2 to surrounding tissue StO2 are more likely to achieve pCR. This early predictor of pCR occurs prior to reductions in tumor size and could enable dynamic feedback for optimization of chemotherapy strategies in breast cancer.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/tratamiento farmacológico , Quimioterapia Adyuvante/métodos , Terapia Neoadyuvante , Consumo de Oxígeno/fisiología , Espectroscopía Infrarroja Corta/métodos , Adulto , Biomarcadores/metabolismo , Neoplasias de la Mama/metabolismo , Femenino , Humanos , Modelos Logísticos , Persona de Mediana Edad , Pruebas en el Punto de Atención , Curva ROC , Análisis de Supervivencia
3.
Cancer Res ; 76(20): 5933-5944, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27527559

RESUMEN

The prospective multicenter ACRIN 6691 trial was designed to evaluate whether changes from baseline to mid-therapy in a diffuse optical spectroscopic imaging (DOSI)-derived imaging endpoint, the tissue optical index (TOI), predict pathologic complete response (pCR) in women undergoing breast cancer neoadjuvant chemotherapy (NAC). DOSI instruments were constructed at the University of California, Irvine (Irvine, CA), and delivered to six institutions where 60 subjects with newly diagnosed breast tumors (at least 2 cm in the longest dimension) were enrolled over a 2-year period. Bedside DOSI images of the tissue concentrations of deoxy-hemoglobin (ctHHb), oxy-hemoglobin (ctHbO2), water (ctH2O), lipid, and TOI (ctHHb × ctH2O/lipid) were acquired on both breasts up to four times during NAC treatment: baseline, 1-week, mid-point, and completion. Of the 34 subjects (mean age 48.4 ± 10.7 years) with complete, evaluable data from both normal and tumor-containing breast, 10 (29%) achieved pCR as determined by central pathology review. The percent change in tumor-to-normal TOI ratio (%TOITN) from baseline to mid-therapy ranged from -82% to 321%, with a median of -36%. Using pCR as the reference standard and ROC curve methodology, %TOITN AUC was 0.60 (95% CI, 0.39-0.81). In the cohort of 17 patients with baseline tumor oxygen saturation (%StO2) greater than the 77% population median, %TOITN AUC improved to 0.83 (95% CI, 0.63-1.00). We conclude that the combination of baseline functional properties and dynamic optical response shows promise for clinical outcome prediction. Cancer Res; 76(20); 5933-44. ©2016 AACR.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Espectroscopía Infrarroja Corta/métodos , Adulto , Anciano , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Quimioterapia Adyuvante , Femenino , Hemoglobinas/metabolismo , Humanos , Modelos Logísticos , Persona de Mediana Edad , Terapia Neoadyuvante , Estudios Prospectivos , Curva ROC
4.
J Biomed Opt ; 17(7): 071304, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22894465

RESUMEN

Tissue water content and molecular microenvironment can provide important intrinsic contrast for cancer imaging. In this work, we examine the relationship between water optical spectroscopic features related to binding state and magnetic resonance imaging (MRI)-measured water diffusion dynamics. Broadband diffuse optical spectroscopic imaging (DOSI) and MR images were obtained from eight patients with locally-advanced infiltrating ductal carcinomas (tumor size=5.5 ± 3.2 cm). A DOSI-derived bound water index (BWI) was compared to the apparent diffusion coefficient (ADC) of diffusion weighted (DW) MRI. BWI and ADC were positively correlated (R=0.90, p-value=0.003) and BWI and ADC both decreased as the bulk water content increased (R=-0.81 and -0.89, respectively). BWI correlated inversely with tumor size (R=-0.85, p-value=0.008). Our results suggest underlying sensitivity differences between BWI and ADC to water in different tissue compartments (e.g., extracellular vs cellular). These data highlight the potential complementary role of DOSI and DW-MRI in providing detailed information on the molecular disposition of water in breast tumors. Because DOSI is a portable technology that can be used at the bedside, BWI may provide a low-cost measure of tissue water properties related to breast cancer biology.


Asunto(s)
Agua Corporal/metabolismo , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Imagen de Difusión por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética/métodos , Imagen Molecular/métodos , Sitios de Unión , Carcinoma Ductal de Mama , Femenino , Humanos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
5.
J Innov Opt Health Sci ; 4(4): 361-372, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22408653

RESUMEN

Treatment-induced apoptosis of cancer cells is one goal of cancer therapy. Interestingly, more heat is generated by mitochondria during apoptosis, especially the uncoupled apoptotic state,(1,2) compared to the resting state. In this case study, we explore these thermal effects by longitudinally measuring temperature variations in a breast lesion of a pathological complete responder during neadjuvant chemotherapy (NAC). Diffuse Optical Spectroscopic Imaging (DOSI) was employed to derive absolute deep tissue temperature using subtle spectral features of the water peak at 975 nm.3 A significant temperature increase was observed in time windows during the anthracycline and cyclophosphamide (AC) regimen but in not paclitaxel and bevacizumab regimen. Hemoglobin concentration changes generally did not follow temperature, suggesting that the measured temperature increases were likely due to mitochondrial uncoupling rather than a direct vascular effect. A simultaneous increase of tissue oxygen saturation with temperature was also observed, suggesting that oxidative stress also contributes to apoptosis. Although preliminary, this study indicates that longitudinal DOSI tissue temperature monitoring provides information that can improve our understanding of the mechanisms of tissue response during NAC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA