Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(8)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38673945

RESUMEN

Childhood cancer incidence, especially in high-income countries, has led to a focus on preserving fertility in this vulnerable population. The common treatments, such as radiation and certain chemotherapeutic agents, though effective, pose a risk to fertility. For adult women, established techniques like embryo and egg freezing are standard, requiring ovarian stimulation. However, for prepubescent girls, ovarian tissue freezing has become the primary option, eliminating the need for hormonal preparation. This review describes the beginning, evolution, and current situation of the fertility preservation options for this young population. A total of 75 studies were included, covering the steps in the current fertility preservation protocols: (i) ovarian tissue extraction, (ii) the freezing method, and (iii) thawing and transplantation. Cryopreservation and the subsequent transplantation of ovarian tissue have resulted in successful fertility restoration, with over 200 recorded live births, including cases involving ovarian tissue cryopreserved from prepubescent girls. Despite promising results, challenges persist, such as follicular loss during transplantation, which is attributed to ischemic and oxidative damage. Optimizing ovarian tissue-freezing processes and exploring alternatives to transplantation, like in vitro systems for follicles to establish maturation, are essential to mitigating associated risks. Further research is required in fertility preservation techniques to enhance clinical outcomes in the future. Ovarian tissue cryopreservation appears to be a method with specific benefits, indications, and risks, which can be an important tool in terms of preserving fertility in younger women.


Asunto(s)
Criopreservación , Preservación de la Fertilidad , Neoplasias , Ovario , Femenino , Humanos , Criopreservación/métodos , Preservación de la Fertilidad/métodos , Neoplasias/terapia , Ovario/trasplante , Niño , Adolescente , Adulto Joven
2.
Int J Mol Sci ; 25(7)2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38612828

RESUMEN

Biomaterials play an important role in the development of advancing three dimensional (3D) in vitro skin models, providing valuable insights for drug testing and tissue-specific modeling. Commercial materials, such as collagen, fibrin or alginate, have been widely used in skin modeling. However, they do not adequately represent the molecular complexity of skin components. On this regard, the development of novel biomaterials that represent the complexity of tissues is becoming more important in the design of advanced models. In this study, we have obtained aged human decellularized dermal extracellular matrix (dECM) hydrogels extracted from cadaveric human skin and demonstrated their potential as scaffold for advanced skin models. These dECM hydrogels effectively reproduce the complex fibrillar structure of other common scaffolds, exhibiting similar mechanical properties, while preserving the molecular composition of the native dermis. It is worth noting that fibroblasts embedded within human dECM hydrogels exhibit a behavior more representative of natural skin compared to commercial collagen hydrogels, where uncontrolled cell proliferation leads to material shrinkage. The described human dECM hydrogel is able to be used as scaffold for dermal fibroblasts in a skin aging-on-a-chip model. These results demonstrate that dECM hydrogels preserve essential components of the native human dermis making them a suitable option for the development of 3D skin aging models that accurately represent the cellular microenvironment, improving existing in vitro skin models and allowing for more reliable results in dermatopathological studies.


Asunto(s)
Matriz Extracelular Descelularizada , Envejecimiento de la Piel , Humanos , Anciano , Materiales Biocompatibles/farmacología , Hidrogeles , Colágeno
3.
Mol Pharm ; 16(2): 834-845, 2019 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-30601665

RESUMEN

Islet transplantation has shown to be a successful alternative in type 1 diabetes treatment, but donor scarcity precludes its worldwide clinical translation. Stem cells are an unlimited source that could circumvent the lack of donors if complete differentiation into insulin-producing cells (IPCs) could be accomplished. We have performed the differentiation of mesenchymal stem cells (MSCs) from different sources into IPCs within three-dimensional (3D) alginate matrixes. We quantified an increased insulin release at the final stage of differentiation compared to undifferentiated MSCs, which is more pronounced in IPCs differentiated from pancreatic-derived MSCs tissues. Moreover, the addition of hyaluronic acid (HA) in alginate microcapsules enhanced, even more, the insulin release from the final IPCs, independent of the MSC source. We can conclude that MSCs can be differentiated into IPCs within alginate microcapsules, enhancing insulin release when HA is present in the 3D alginate matrixes.


Asunto(s)
Alginatos/química , Diferenciación Celular/efectos de los fármacos , Ácido Hialurónico/farmacología , Células Madre Mesenquimatosas/efectos de los fármacos , Páncreas/citología , Animales , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Microambiente Celular/fisiología , Insulina/metabolismo , Ratones , Ratones Endogámicos BALB C
4.
Mol Pharm ; 14(7): 2390-2399, 2017 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-28558467

RESUMEN

The potential clinical application of alginate cell microencapsulation has advanced enormously during the past decade. However, the 3D environment created by alginate beads does not mimic the natural extracellular matrix surrounding cells in vivo, responsible of cell survival and functionality. As one of the most frequent macromolecules present in the extracellular matrix is hyaluronic acid, we have formed hybrid beads with alginate and hyaluronic acid recreating a closer in vivo cell environment. Our results show that 1% alginate-0.25% hyaluronic acid microcapsules retain 1.5% alginate physicochemical properties. Moreover, mesenchymal stem cells encapsulated in these hybrid beads show enhanced viability therapeutic protein release and mesenchymal stem cells' potential to differentiate into chondrogenic lineage. Although future studies with additional proteins need to be done in order to approach even more the extracellular matrix features, we have shown that hyaluronic acid protects alginate encapsulated mesenchymal stem cells by providing a niche-like environment and remaining them competent as a sustainable drug delivery system.


Asunto(s)
Alginatos/química , Cápsulas/química , Ácido Hialurónico/química , Células Madre Mesenquimatosas/efectos de los fármacos , Alginatos/farmacología , Animales , Apoptosis/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Condrogénesis/efectos de los fármacos , Ácido Glucurónico/química , Ácido Glucurónico/farmacología , Ácidos Hexurónicos/química , Ácidos Hexurónicos/farmacología , Ácido Hialurónico/farmacología , Células Madre Mesenquimatosas/citología , Ratones
5.
Mol Pharm ; 14(3): 885-898, 2017 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-28118715

RESUMEN

The beneficial effect of combining alginate hydrogel with graphene oxide (GO) on microencapsulated C2C12-myoblast viability has recently been described. However, the commercially available GO lacks homogeneity in size, this parameter being of high relevance for the cell fate in two-dimensional studies. In three-dimensional applications the capacity of this material for binding different kinds of proteins can result in the reduction of de novo released protein that can effectively reach the vicinity of the microcapsules. Undoubtedly, this could be an important hurdle in its clinical use when combined with alginate-PLL microcapsules. Here, we demonstrate that the homogenization of GO nanoparticles is not a mandatory preparation step in order to get the best of this material upon cell microencapsulation. In fact, when the superficial area of these particles is increased, higher amounts of the therapeutic protein erythropoietin (EPO) are adsorbed on their surface. On the other hand, we have been able to improve even more the favorable effects of this graphene derivative on microencapsulated cell viability by forming a protein biocorona. These proteins block the potential binding sites of EPO and, therefore, enhance the amount of therapeutic drug that is released. Finally, we prove that these hybrid alginate-protein-coated GO-microcapsules are functional in vivo.


Asunto(s)
Alginatos/química , Cápsulas/farmacología , Eritropoyetina/metabolismo , Grafito/farmacología , Mioblastos/efectos de los fármacos , Óxidos/farmacología , Proteínas/química , Animales , Cápsulas/química , Línea Celular , Supervivencia Celular/efectos de los fármacos , Composición de Medicamentos/métodos , Ácido Glucurónico/química , Grafito/química , Ácidos Hexurónicos/química , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Hidrogel de Polietilenoglicol-Dimetacrilato/farmacología , Ratones , Ratones Endogámicos C3H , Mioblastos/metabolismo , Nanopartículas/química , Óxidos/química
6.
Mol Pharm ; 12(11): 3953-62, 2015 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-26448513

RESUMEN

The combination of mesenchymal stem cells (MSCs) and biomimetic matrices for cell-based therapies has led to enormous advances, including the field of cell microencapsulation technology. In the present work, we have evaluated the potential of genetically modified MSCs from mice bone marrow, D1-MSCs, immobilized in alginate microcapsules with different RGD (Arg-Gly-Asp) densities. Results demonstrated that the microcapsules represent a suitable platform for D1-MSC encapsulation since cell immobilization into alginate matrices does not affect their main characteristics. The in vitro study showed a higher activity of D1-MSCs when they are immobilized in RGD-modified alginate microcapsules, obtaining the highest therapeutic factor secretion with low and intermediate densities of the bioactive molecule. In addition, the inclusion of RGD increased the differentiation potential of immobilized cells upon specific induction. However, subcutaneous implantation did not induce differentiation of D1-MSCs toward any lineage remaining at an undifferentiated state in vivo.


Asunto(s)
Alginatos/química , Biomimética , Diferenciación Celular/efectos de los fármacos , Células Inmovilizadas/citología , Células Madre Mesenquimatosas/citología , Oligopéptidos/farmacología , Animales , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Cápsulas , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Células Inmovilizadas/efectos de los fármacos , Femenino , Ácido Glucurónico/química , Ácidos Hexurónicos/química , Células Madre Mesenquimatosas/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Fenotipo
7.
ACS Biomater Sci Eng ; 10(2): 987-997, 2024 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-38234159

RESUMEN

A combination of human-induced pluripotent stem cells (hiPSCs) and 3D microtissue culture techniques allows the generation of models that recapitulate the cardiac microenvironment for preclinical research of new treatments. In particular, spheroids represent the simplest approach to culture cells in 3D and generate gradients of cellular access to the media, mimicking the effects of an ischemic event. However, previous models required incubation under low oxygen conditions or deprived nutrient media to recreate ischemia. Here, we describe the generation of large spheroids (i.e., larger than 500 µm diameter) that self-induce an ischemic core. Spheroids were generated by coculture of cardiomyocytes derived from hiPSCs (hiPSC-CMs) and primary human cardiac fibroblast (hCF). In the proper medium, cells formed aggregates that generated an ischemic core 2 days after seeding. Spheroids also showed spontaneous cellular reorganization after 10 days, with hiPSC-CMs located at the center and surrounded by hCFs. This led to an increase in microtissue stiffness, characterized by the implementation of a constriction assay. All in all, these phenomena are hints of the fibrotic tissue remodeling secondary to a cardiac ischemic event, thus demonstrating the suitability of these spheroids for the modeling of human cardiac ischemia and its potential application for new treatments and drug research.


Asunto(s)
Isquemia Miocárdica , Miocitos Cardíacos , Humanos , Constricción , Células Cultivadas , Isquemia
8.
Int J Pharm ; 632: 122589, 2023 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-36623742

RESUMEN

Myocardial ischaemia is one of the leading dead causes worldwide. Although animal experiments have historically provided a wealth of information, animal models are time and money consuming, and they usually miss typical human patient's characteristics associated with ischemia prevalence, including aging and comorbidities. Generating reliable in vitro models that recapitulate the human cardiac microenvironment during an ischaemic event can boost the development of new drugs and therapeutic strategies, as well as our understanding of the underlying cellular and molecular events, helping the optimization of therapeutic approaches prior to animal and clinical testing. Although several culture systems have emerged for the recreation of cardiac physiology, mimicking the features of an ischaemic heart tissue in vitro is challenging and certain aspects of the disease process remain poorly addressed. Here, current in vitro cardiac culture systems used for modelling cardiac ischaemia, from self-aggregated organoids to scaffold-based constructs and heart-on-chip platforms are described. The advantages of these models to recreate ischaemic hallmarks such as oxygen gradients, pathological alterations of mechanical strength or fibrotic responses are highlighted. The new models represent a step forward to be considered, but unfortunately, we are far away from recapitulating all complexity of the clinical situations.


Asunto(s)
Enfermedad de la Arteria Coronaria , Isquemia Miocárdica , Animales , Humanos , Corazón , Isquemia , Recreación
9.
Lab Chip ; 23(10): 2434-2446, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37013698

RESUMEN

The tissue microenvironment plays a crucial role in tissue homeostasis and disease progression. However, the in vitro simulation has been limited by the lack of adequate biomimetic models in the last decades. Thanks to the advent of microfluidic technology for cell culture applications, these complex microenvironments can be recreated by combining hydrogels, cells and microfluidic devices. Nevertheless, this advance has several limitations. When cultured in three-dimensional (3D) hydrogels inside microfluidic devices, contractile cells may exert forces that eventually collapse the 3D structure. Disrupting the compartmentalisation creates an obstacle to long-term or highly cell-concentrated assays, which are extremely relevant for multiple applications such as fibrosis or ischaemia. Therefore, we tested surface treatments on cyclic-olefin polymer-based microfluidic devices (COP-MD) to promote the immobilisation of collagen as a 3D matrix protein. Thus, we compared three surface treatments in COP devices for culturing human cardiac fibroblasts (HCF) embedded in collagen hydrogels. We determined the immobilisation efficiency of collagen hydrogel by quantifying the hydrogel transversal area within the devices at the studied time points. Altogether, our results indicated that surface modification with polyacrylic acid photografting (PAA-PG) of COP-MD is the most effective treatment to avoid the quick collapse of collagen hydrogels. As a proof-of-concept experiment, and taking advantage of the low-gas permeability properties of COP-MD, we studied the application of PAA-PG pre-treatment to generate a self-induced ischaemia model. Different necrotic core sizes were developed depending on initial HCF density seeding with no noticeable gel collapse. We conclude that PAA-PG allows long-term culture, gradient generation and necrotic core formation of contractile cell types such as myofibroblasts. This novel approach will pave the way for new relevant in vitro co-culture models where fibroblasts play a key role such as wound healing, tumour microenvironment and ischaemia within microfluidic devices.


Asunto(s)
Colágeno , Hidrogeles , Humanos , Hidrogeles/química , Colágeno/química , Matriz Extracelular/química , Isquemia , Dispositivos Laboratorio en un Chip
10.
Pharmaceutics ; 14(7)2022 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-35890312

RESUMEN

Preclinical research remains hampered by an inadequate representation of human tissue environments which results in inaccurate predictions of a drug candidate's effects and target's suitability. While human 2D and 3D cell cultures and organoids have been extensively improved to mimic the precise structure and function of human tissues, major challenges persist since only few of these models adequately represent the complexity of human tissues. The development of skin-on-chip technology has allowed the transition from static 3D cultures to dynamic 3D cultures resembling human physiology. The integration of vasculature, immune system, or the resident microbiome in the next generation of SoC, with continuous detection of changes in metabolism, would potentially overcome the current limitations, providing reliable and robust results and mimicking the complex human skin. This review aims to provide an overview of the biological skin constituents and mechanical requirements that should be incorporated in a human skin-on-chip, permitting pharmacological, toxicological, and cosmetic tests closer to reality.

11.
J Control Release ; 333: 448-486, 2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-33811983

RESUMEN

Tendon injuries are a global health problem that affects millions of people annually. The properties of tendons make their natural rehabilitation a very complex and long-lasting process. Thanks to the development of the fields of biomaterials, bioengineering and cell biology, a new discipline has emerged, tissue engineering. Within this discipline, diverse approaches have been proposed. The obtained results turn out to be promising, as increasingly more complex and natural tendon-like structures are obtained. In this review, the nature of the tendon and the conventional treatments that have been applied so far are underlined. Then, a comparison between the different tendon tissue engineering approaches that have been proposed to date is made, focusing on each of the elements necessary to obtain the structures that allow adequate regeneration of the tendon: growth factors, cells, scaffolds and techniques for scaffold development. The analysis of all these aspects allows understanding, in a global way, the effect that each element used in the regeneration of the tendon has and, thus, clarify the possible future approaches by making new combinations of materials, designs, cells and bioactive molecules to achieve a personalized regeneration of a functional tendon.


Asunto(s)
Ingeniería de Tejidos , Andamios del Tejido , Materiales Biocompatibles , Péptidos y Proteínas de Señalización Intercelular , Tendones
12.
Mater Sci Eng C Mater Biol Appl ; 123: 112003, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33812623

RESUMEN

Muscle tissue possess an innate regenerative potential that involves an extremely complicated and synchronized process on which resident muscle stem cells play a major role: activate after an injury, differentiate and fuse originating new myofibers for muscle repair. Considerable efforts have been made to design new approaches based on material systems to potentiate muscle repair by engineering muscle extracellular matrix and/or including soluble factors/cells in the media, trying to recapitulate the key biophysical and biochemical cues present in the muscle niche. This work proposes a different and simple approach to potentiate muscle regeneration exploiting the interplay between specific cell membrane receptors. The simultaneous stimulation of borate transporter, NaBC1 (encoded by SLC4A11gene), and fibronectin-binding integrins induced higher number and size of focal adhesions, major cell spreading and actin stress fibers, strengthening myoblast attachment and providing an enhanced response in terms of myotube fusion and maturation. The stimulated NaBC1 generated an adhesion-driven state through a mechanism that involves simultaneous NaBC1/α5ß1/αvß3 co-localization. We engineered and characterized borax-loaded alginate hydrogels for an effective activation of NaBC1 in vivo. After inducing an acute injury with cardiotoxin in mice, active-NaBC1 accelerated the muscle regeneration process. Our results put forward a new biomaterial approach for muscle repair.


Asunto(s)
Alginatos , Hidrogeles , Animales , Boratos , Hidrogeles/farmacología , Ratones , Regeneración
13.
Int J Pharm ; 607: 121014, 2021 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-34400275

RESUMEN

Cardiosphere-derived cells (CDCs) encapsulated within alginate-poly-L-lysine-alginate (APA) microcapsules present a promising treatment alternative for myocardial infarction. However, clinical translatability of encapsulated CDCs requires robust long-term preservation of microcapsule and cell stability, since cell culture at 37 °C for long periods prior to patient implantation involve high resource, space and manpower costs, sometimes unaffordable for clinical facilities. Cryopreservation in liquid nitrogen is a well-established procedure to easily store cells with good recovery rate, but its effects on encapsulated cells are understudied. In this work, we assess both the biological response of CDCs and the mechanical stability of microcapsules after long-term (i.e., 60 days) cryopreservation and compare them to encapsulated CDCs cultured at 37 °C. We investigate for the first time the effects of cryopreservation on stiffness and topographical features of microcapsules for cell therapy. Our results show that functionality of encapsulated CDCs is optimum during 7 days at 37 °C, while cryopreservation seems to better guarantee the stability of both CDCs and APA microcapsules properties during longer storage than 15 days. These results point out cryopreservation as a suitable technique for long-term storage of encapsulated cells to be translated from the bench to the clinic.


Asunto(s)
Alginatos , Criopreservación , Cápsulas , Técnicas de Cultivo de Célula , Humanos
14.
Nanoscale ; 13(34): 14354-14362, 2021 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-34477718

RESUMEN

Microencapsulation of therapeutic cells has widely advanced toward the development of treatments for various diseases, in particular seeking the protection of cell transplants from immune rejection. However, several challenges in cell therapy remain due to the lack of suitable methods to monitor in vivo microcapsule tracking, microcapsule stability and/or altered cell viability and proliferation upon transplantation. We propose in this work the incorporation of contrast agents in microcapsules, which can be easily visualized by SERS imaging. By placing SERS probes in the alginate extracellular layer, a high contrast can be obtained with negligible toxicity. Specifically, we used a pH-sensitive SERS tracking probe consisting of gold nanostars encoded with a pH-sensitive Raman-active molecule, and protected by a layer of biocompatible polymer coating, grafted on the nanoparticles via electrostatic interactions. This nanomaterial is highly sensitive within the biologically relevant pH range, 5.5-7.8. We demonstrate that this SERS-based pH sensor can provide information about cell death of microencapsulated cells, in a non-invasive manner. As a result, we expect that this approach should provide a general strategy to study biological interactions at the microcapsule level.


Asunto(s)
Oro , Nanoestructuras , Cápsulas , Supervivencia Celular , Concentración de Iones de Hidrógeno
15.
ACS Biomater Sci Eng ; 7(1): 242-253, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33337130

RESUMEN

Microencapsulation of cells in hydrogel-based porous matrices is an approach that has demonstrated great success in regenerative cell therapy. These microcapsules work by concealing the exogenous cells and materials in a robust biomaterial that prevents their recognition by the immune system. A vast number of formulations and additives are continuously being tested to optimize cell viability and mechanical properties of the hydrogel. Determining the effects of new microcapsule additives is a lengthy process that usually requires extensive in vitro and in vivo testing. In this paper, we developed a workflow using nanoindentation (i.e., indentation with a nanoprobe in an atomic force microscope) and a custom-built microfluidic constriction device to characterize the effect of graphene oxide (GO) on three microcapsule formulations. With our workflow, we determined that GO modifies the microcapsule stiffness and surface properties in a formulation-dependent manner. Our results also suggest, for the first time, that GO alters the conformation of the microcapsule hydrogel and its interaction with subsequent coatings. Overall, our workflow can infer the effects of new additives on microcapsule surfaces. Thus, our workflow can contribute to diminishing the time required for the validation of new microcapsule formulations and accelerate their clinical translation.


Asunto(s)
Alginatos , Cápsulas , Constricción , Ácido Glucurónico , Grafito , Ácidos Hexurónicos , Análisis Espectral
16.
Pharmaceutics ; 13(11)2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34834235

RESUMEN

The administration of cardiosphere-derived cells (CDCs) after acute myocardial infarction (AMI) is very promising. CDC encapsulation in alginate-poly-l-lysine-alginate (APA) could increase cell survival and adherence. The intrapericardial (IP) approach potentially achieves high concentrations of the therapeutic agent in the infarcted area. We aimed to evaluate IP therapy using a saline vehicle as a control (CON), a dose of 30 × 106 CDCs (CDCs) or APA microcapsules containing 30 × 106 CDCs (APA-CDCs) at 72 h in a porcine AMI model. Magnetic resonance imaging (MRI) was used to determine the left ventricular ejection fraction (LVEF), infarct size (IS), and indexed end diastolic and systolic volumes (EDVi; ESVi) pre- and 10 weeks post-injection. Programmed electrical stimulation (PES) was performed to test arrhythmia inducibility before euthanasia. Histopathological analysis was carried out afterwards. The IP infusion was successful in all animals. At 10 weeks, MRI revealed significantly higher LVEF in the APA-CDC group compared with CON. No significant differences were observed among groups in IS, EDVi, ESVi, PES and histopathological analyses. In conclusion, the IP injection of CDCs (microencapsulated or not) was feasible and safe 72 h post-AMI in the porcine model. Moreover, CDCs APA encapsulation could have a beneficial effect on cardiac function, reflected by a higher LVEF at 10 weeks.

17.
Pharmaceutics ; 13(9)2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34575549

RESUMEN

Modifying hydrogels in order to enhance their conductivity is an exciting field with applications in cardio and neuro-regenerative medicine. Therefore, we have designed hybrid alginate hydrogels containing uncoated and protein-coated reduced graphene oxide (rGO). We specifically studied the adsorption of three different proteins, BSA, elastin, and collagen, and the outcomes when these protein-coated rGO nanocomposites are embedded within the hydrogels. Our results demonstrate that BSA, elastin, and collagen are adsorbed onto the rGO surface, through a non-spontaneous phenomenon that fits Langmuir and pseudo-second-order adsorption models. Protein-coated rGOs are able to preclude further adsorption of erythropoietin, but not insulin. Collagen showed better adsorption capacity than BSA and elastin due to its hydrophobic nature, although requiring more energy. Moreover, collagen-coated rGO hybrid alginate hydrogels showed an enhancement in conductivity, showing that it could be a promising conductive scaffold for regenerative medicine.

18.
Int J Pharm ; 599: 120454, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33676988

RESUMEN

Myocardial infarction is caused by an interruption of coronary blood flow, leading to one of the main death causes worldwide. Current therapeutic approaches are palliative and not able to solve the loss of cardiac tissue. Cardiosphere derived cells (CDCs) reduce scarring, and increase viable myocardium, with safety and adequate biodistribution, but show a low rate engraftment and survival after implantation. In order to solve the low retention, we propose the encapsulation of CDCs within three-dimensional alginate-poly-L-lysine-alginate matrix as therapy for cardiac regeneration. In this work, we demonstrate the encapsulation of CDCs in alginate matrix, with no decrease in viability over a month, and showing the preservation of CDCs phenotype, differentiation potential, gene expression profile and growth factor release after encapsulation, moving a step forward to clinical translation of CDCs therapy in regeneration in heart failure.


Asunto(s)
Miocardio , Trasplante de Células Madre , Alginatos , Animales , Diferenciación Celular , Corazón , Miocitos Cardíacos , Porcinos , Distribución Tisular
19.
Int J Pharm ; 580: 119226, 2020 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-32179151

RESUMEN

There is a vast and rapid increase in the applications of graphene oxide (GO) and reduced graphene oxide (rGO) in the biomedical field, including drug delivery, bio-sensing, and diagnostic tools. Among all the applications, the GO and rGO-based scaffolds are a very promising system that have attracted attention because of their great clinical projection in tissue regeneration therapies. Both GO and rGO have shown a strong impact on the proliferation and differentiation of implemented stem cells, but still need to overcome several challenges, such as cytotoxicity, biodistribution, biotransformation or immune response. However, there are still controversial hypothesises regarding the mechanisms involved in these issues that should be clarified in order to improve the applications of these compounds. 3D-scaffolds can help in solving some of those limitations when moving into preclinical studies in regenerative medicine. In this review, we will describe the application of GO and rGO within 3D scaffolds in bone, cardiac and neural regenerative medicine after analyzing the aforementioned challenges.


Asunto(s)
Grafito/química , Grafito/metabolismo , Medicina Regenerativa/métodos , Animales , Huesos/metabolismo , Huesos/fisiología , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Corazón/fisiología , Humanos , Distribución Tisular/fisiología , Ingeniería de Tejidos/métodos , Andamios del Tejido
20.
Methods Mol Biol ; 2100: 395-405, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31939138

RESUMEN

Alginate has demonstrated high applicability as a matrix-forming biomaterial for cell immobilization due to its ability to make hydrogels combined with cells in a rapid and non-toxic manner in physiological conditions, while showing excellent biocompatibility, preserving immobilized cell viability and function. Moreover, depending on its application, alginate hydrogel physicochemical properties such as porosity, stiffness, gelation time, and injectability can be tuned. This technology has been applied to several cell types that are able to produce therapeutic factors. In particular, alginate has been the most commonly used material in pancreatic islet entrapment for type 1 diabetes mellitus treatment. This chapter compiles information regarding the alginate handling, and we describe the most important steps and recommendations to immobilize insulin-producing cells within a tuned injectable alginate hydrogel using a syringe-based mixing system, detailing how to assess the viability and the biological functionality of the embedded cells.


Asunto(s)
Alginatos , Materiales Biocompatibles , Células Inmovilizadas , Hidrogeles , Células Secretoras de Insulina , Andamios del Tejido , Animales , Línea Celular , Supervivencia Celular , Diabetes Mellitus Tipo 1/terapia , Insulinas/biosíntesis , Ingeniería de Tejidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA