Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Hum Mol Genet ; 33(3): 254-269, 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-37930228

RESUMEN

CACNA1S-related myopathy, due to pathogenic variants in the CACNA1S gene, is a recently described congenital muscle disease. Disease associated variants result in loss of gene expression and/or reduction of Cav1.1 protein stability. There is an incomplete understanding of the underlying disease pathomechanisms and no effective therapies are currently available. A barrier to the study of this myopathy is the lack of a suitable animal model that phenocopies key aspects of the disease. To address this barrier, we generated knockouts of the two zebrafish CACNA1S paralogs, cacna1sa and cacna1sb. Double knockout fish exhibit severe weakness and early death, and are characterized by the absence of Cav1.1 α1 subunit expression, abnormal triad structure, and impaired excitation-contraction coupling, thus mirroring the severe form of human CACNA1S-related myopathy. A double mutant (cacna1sa homozygous, cacna1sb heterozygote) exhibits normal development, but displays reduced body size, abnormal facial structure, and cores on muscle pathologic examination, thus phenocopying the mild form of human CACNA1S-related myopathy. In summary, we generated and characterized the first cacna1s zebrafish loss-of-function mutants, and show them to be faithful models of severe and mild forms of human CACNA1S-related myopathy suitable for future mechanistic studies and therapy development.


Asunto(s)
Canales de Calcio Tipo L , Enfermedades Musculares , Proteínas de Pez Cebra , Pez Cebra , Animales , Humanos , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/metabolismo , Músculo Esquelético/metabolismo , Enfermedades Musculares/patología , Mutación , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
2.
Hum Mol Genet ; 32(19): 2913-2928, 2023 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-37462524

RESUMEN

Human vertebral malformations (VMs) have an estimated incidence of 1/2000 and are associated with significant health problems including congenital scoliosis (CS) and recurrent organ system malformation syndromes such as VACTERL (vertebral anomalies; anal abnormalities; cardiac abnormalities; tracheo-esophageal fistula; renal anomalies; limb anomalies). The genetic cause for the vast majority of VMs are unknown. In a CS/VM patient cohort, three COL11A2 variants (R130W, R1407L and R1413H) were identified in two patients with cervical VM. A third patient with a T9 hemivertebra and the R130W variant was identified from a separate study. These substitutions are predicted to be damaging to protein function, and R130 and R1407 residues are conserved in zebrafish Col11a2. To determine the role for COL11A2 in vertebral development, CRISPR/Cas9 was used to create a nonsense mutation (col11a2L642*) as well as a full gene locus deletion (col11a2del) in zebrafish. Both col11a2L642*/L642* and col11a2del/del mutant zebrafish exhibit vertebral fusions in the caudal spine, which form due to mineralization across intervertebral segments. To determine the functional consequence of VM-associated variants, we assayed their ability to suppress col11a2del VM phenotypes following transgenic expression within the developing spine. While wildtype col11a2 expression suppresses fusions in col11a2del/+ and col11a2del/del backgrounds, patient missense variant-bearing col11a2 failed to rescue the loss-of-function phenotype in these animals. These results highlight an essential role for COL11A2 in vertebral development and support a pathogenic role for two missense variants in CS.


Asunto(s)
Anomalías Múltiples , Escoliosis , Animales , Humanos , Escoliosis/genética , Pez Cebra/genética , Columna Vertebral/anomalías , Anomalías Múltiples/genética , Mutación Missense , Colágeno Tipo XI/genética
3.
Cell ; 138(5): 898-910, 2009 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-19737518

RESUMEN

Alternative splicing is a key process underlying the evolution of increased proteomic and functional complexity and is especially prevalent in the mammalian nervous system. However, the factors and mechanisms governing nervous system-specific alternative splicing are not well understood. Through a genome-wide computational and expression profiling strategy, we have identified a tissue- and vertebrate-restricted Ser/Arg (SR) repeat splicing factor, the neural-specific SR-related protein of 100 kDa (nSR100). We show that nSR100 regulates an extensive network of brain-specific alternative exons enriched in genes that function in neural cell differentiation. nSR100 acts by increasing the levels of the neural/brain-enriched polypyrimidine tract binding protein and by interacting with its target transcripts. Disruption of nSR100 prevents neural cell differentiation in cell culture and in the developing zebrafish. Our results thus reveal a critical neural-specific alternative splicing regulator, the evolution of which has contributed to increased complexity in the vertebrate nervous system.


Asunto(s)
Empalme Alternativo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , Encéfalo/citología , Diferenciación Celular , Línea Celular , Humanos , Ratones , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Neuronas/citología , Proteínas Nucleares/química , Proteínas de Unión al ARN/química , Factores de Empalme Serina-Arginina
4.
PLoS Genet ; 14(11): e1007817, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30475797

RESUMEN

Cerebrospinal fluid flow is crucial for neurodevelopment and homeostasis of the ventricular system of the brain, with localized flow being established by the polarized beating of the ependymal cell (EC) cilia. Here, we report a homozygous one base-pair deletion, c.1193delT (p.Leu398Glnfs*2), in the Kinesin Family Member 6 (KIF6) gene in a child displaying neurodevelopmental defects and intellectual disability. To test the pathogenicity of this novel human KIF6 mutation we engineered an analogous C-terminal truncating mutation in mouse. These mutant mice display severe, postnatal-onset hydrocephalus. We generated a Kif6-LacZ transgenic mouse strain and report expression specifically and uniquely within the ependymal cells (ECs) of the brain, without labeling other multiciliated mouse tissues. Analysis of Kif6 mutant mice with scanning electron microscopy (SEM) and immunofluorescence (IF) revealed specific defects in the formation of EC cilia, without obvious effect of cilia of other multiciliated tissues. Dilation of the ventricular system and defects in the formation of EC cilia were also observed in adult kif6 mutant zebrafish. Finally, we report Kif6-GFP localization at the axoneme and basal bodies of multi-ciliated cells (MCCs) of the mucociliary Xenopus epidermis. Overall, this work describes the first clinically-defined KIF6 homozygous null mutation in human and defines KIF6 as a conserved mediator of neurological development with a specific role for EC ciliogenesis in vertebrates.


Asunto(s)
Epéndimo/anomalías , Cinesinas/genética , Mutación , Trastornos del Neurodesarrollo/genética , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Niño , Cilios/metabolismo , Cilios/patología , Consanguinidad , Epéndimo/metabolismo , Femenino , Expresión Génica , Homocigoto , Humanos , Hidrocefalia/genética , Discapacidad Intelectual/genética , Cinesinas/deficiencia , Cinesinas/metabolismo , Cinesinas/fisiología , Masculino , Ratones , Ratones Transgénicos , Modelos Animales , Trastornos del Neurodesarrollo/metabolismo , Trastornos del Neurodesarrollo/patología , Linaje , Eliminación de Secuencia , Distribución Tisular , Xenopus laevis , Pez Cebra
5.
Trends Genet ; 33(3): 183-196, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28174019

RESUMEN

Idiopathic scoliosis (IS) refers to a 3D rotation of the spine that occurs in the absence of underlying vertebral anomalies or obvious physiological defects. Despite affecting approximately 4% of the population, the etiology and pathogenesis of IS remain poorly understood, largely due to genetic heterogeneity and historical lack of appropriate developmental models. Recently, zebrafish has emerged as a powerful system for studying IS, owing to well-developed genetic resources and a natural susceptibility to spinal curvatures. Here, we summarize the utility of zebrafish as a genetic and biological model of IS, examine current faithful mutant IS models, and focus on their recent advances towards understanding core mechanisms governing both normal spine morphogenesis and the pathogenesis of IS-like spinal deformities.


Asunto(s)
Escoliosis/genética , Columna Vertebral/fisiopatología , Pez Cebra/genética , Animales , Modelos Animales de Enfermedad , Humanos , Mutación , Escoliosis/fisiopatología
6.
Development ; 140(8): 1807-18, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23533179

RESUMEN

Using zebrafish, we have characterised the function of Protein tyrosine kinase 7 (Ptk7), a transmembrane pseudokinase implicated in Wnt signal transduction during embryonic development and in cancer. Ptk7 is a known regulator of mammalian neural tube closure and Xenopus convergent extension movement. However, conflicting reports have indicated both positive and negative roles for Ptk7 in canonical Wnt/ß-catenin signalling. To clarify the function of Ptk7 in vertebrate embryonic patterning and morphogenesis, we generated maternal-zygotic (MZ) ptk7 mutant zebrafish using a zinc-finger nuclease (ZFN) gene targeting approach. Early loss of zebrafish Ptk7 leads to defects in axial convergence and extension, neural tube morphogenesis and loss of planar cell polarity (PCP). Furthermore, during late gastrula and segmentation stages, we observe significant upregulation of ß-catenin target gene expression and demonstrate a clear role for Ptk7 in attenuating canonical Wnt/ß-catenin activity in vivo. MZptk7 mutants display expanded differentiation of paraxial mesoderm within the tailbud, suggesting an important role for Ptk7 in regulating canonical Wnt-dependent fate specification within posterior stem cell pools post-gastrulation. Furthermore, we demonstrate that a plasma membrane-tethered Ptk7 extracellular fragment is sufficient to rescue both PCP morphogenesis and Wnt/ß-catenin patterning defects in MZptk7 mutant embryos. Our results indicate that the extracellular domain of Ptk7 acts as an important regulator of both non-canonical Wnt/PCP and canonical Wnt/ß-catenin signalling in multiple vertebrate developmental contexts, with important implications for the upregulated PTK7 expression observed in human cancers.


Asunto(s)
Diferenciación Celular/fisiología , Morfogénesis/fisiología , Proteínas Tirosina Quinasas/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Vía de Señalización Wnt/fisiología , Pez Cebra/embriología , beta Catenina/metabolismo , Animales , Polaridad Celular/fisiología , Cartilla de ADN/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Marcación de Gen , Células HEK293 , Humanos , Hibridación in Situ , Microscopía Confocal , Mutagénesis , Tubo Neural/embriología , Proteínas Tirosina Quinasas Receptoras/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas de Pez Cebra
7.
Development ; 140(13): 2835-46, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23757414

RESUMEN

Advances in imaging and cell-labeling techniques have greatly enhanced our understanding of developmental and neurobiological processes. Among vertebrates, zebrafish is uniquely suited for in vivo imaging owing to its small size and optical translucency. However, distinguishing and following cells over extended time periods remains difficult. Previous studies have demonstrated that Cre recombinase-mediated recombination can lead to combinatorial expression of spectrally distinct fluorescent proteins (RFP, YFP and CFP) in neighboring cells, creating a 'Brainbow' of colors. The random combination of fluorescent proteins provides a way to distinguish adjacent cells, visualize cellular interactions and perform lineage analyses. Here, we describe Zebrabow (Zebrafish Brainbow) tools for in vivo multicolor imaging in zebrafish. First, we show that the broadly expressed ubi:Zebrabow line provides diverse color profiles that can be optimized by modulating Cre activity. Second, we find that colors are inherited equally among daughter cells and remain stable throughout embryonic and larval stages. Third, we show that UAS:Zebrabow lines can be used in combination with Gal4 to generate broad or tissue-specific expression patterns and facilitate tracing of axonal processes. Fourth, we demonstrate that Zebrabow can be used for long-term lineage analysis. Using the cornea as a model system, we provide evidence that embryonic corneal epithelial clones are replaced by large, wedge-shaped clones formed by centripetal expansion of cells from the peripheral cornea. The Zebrabow tool set presented here provides a resource for next-generation color-based anatomical and lineage analyses in zebrafish.


Asunto(s)
Pez Cebra/embriología , Animales , Animales Modificados Genéticamente/embriología , Animales Modificados Genéticamente/metabolismo , Linaje de la Célula , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Integrasas/genética , Integrasas/metabolismo , Pez Cebra/metabolismo
8.
Dev Biol ; 387(2): 154-66, 2014 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-24462977

RESUMEN

Growth factors and morphogens regulate embryonic patterning, cell fate specification, cell migration, and morphogenesis. The activity and behavior of these signaling molecules are regulated in the extracellular space through interactions with proteoglycans (Bernfield et al., 1999; Perrimon and Bernfield 2000; Lander and Selleck 2000; Selleck 2000). Proteoglycans are high molecular-weight proteins consisting of a core protein with covalently linked glycosaminoglycan (GAG) side chains, which are thought to mediate ligand interaction. Drosophila mutant embryos deficient for UDP-glucose dehydrogenase activity (Ugdh, required for GAG synthesis) exhibit abnormal Fgf, Wnt and TGFß signaling and die during gastrulation, indicating a broad and critical role for proteoglycans during early embryonic development (Lin et al., 1999; Lin and Perrimon 2000) (Hacker et al., 1997). Mouse Ugdh mutants also die at gastrulation, however, only Fgf signaling appears disrupted (Garcia-Garcia and Anderson, 2003). These findings suggested a possible divergence in the requirement for proteoglycans during Drosophila and mouse embryogenesis, and that mammals may have evolved alternative means of regulating Wnt and TGFß activity. To further examine the function of proteoglycans in vertebrate development, we have characterized zebrafish mutants devoid of both maternal and zygotic Ugdh/Jekyll activity (MZjekyll). We demonstrate that MZjekyll mutant embryos display abnormal Fgf, Shh, and Wnt signaling activities, with concomitant defects in central nervous system patterning, cardiac ventricular fate specification and axial morphogenesis. Furthermore, we uncover a novel role for proteoglycans in left-right pattern formation. Our findings resolve longstanding questions into the evolutionary conservation of Ugdh function and provide new mechanistic insights into the initiation of left-right asymmetry.


Asunto(s)
Tipificación del Cuerpo/genética , Desarrollo Embrionario/genética , Proteoglicanos de Heparán Sulfato/metabolismo , Síndrome de Heterotaxia/genética , Proteoglicanos/metabolismo , Uridina Difosfato Glucosa Deshidrogenasa/genética , Cigoto , Animales , Drosophila/embriología , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Gastrulación/genética , Regulación del Desarrollo de la Expresión Génica , Glicosaminoglicanos/metabolismo , Proteínas Hedgehog/metabolismo , Proteoglicanos de Heparán Sulfato/genética , Ratones , Transducción de Señal/genética , Factor de Crecimiento Transformador beta/metabolismo , Proteínas Wnt/metabolismo , Pez Cebra/embriología , Pez Cebra/genética , Pez Cebra/metabolismo
9.
EMBO J ; 30(16): 3259-73, 2011 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-21765395

RESUMEN

Fibroblast growth factor receptor 1 (FGFR1) has critical roles in cellular proliferation and differentiation during animal development and adult homeostasis. Here, we show that human Nedd4 (Nedd4-1), an E3 ubiquitin ligase comprised of a C2 domain, 4 WW domains, and a Hect domain, regulates endocytosis and signalling of FGFR1. Nedd4-1 binds directly to and ubiquitylates activated FGFR1, by interacting primarily via its WW3 domain with a novel non-canonical sequence (non-PY motif) on FGFR1. Deletion of this recognition motif (FGFR1-Δ6) abolishes Nedd4-1 binding and receptor ubiquitylation, and impairs endocytosis of activated receptor, as also observed upon Nedd4-1 knockdown. Accordingly, FGFR1-Δ6, or Nedd4-1 knockdown, exhibits sustained FGF-dependent receptor Tyr phosphorylation and downstream signalling (activation of FRS2α, Akt, Erk1/2, and PLCγ). Expression of FGFR1-Δ6 in human embryonic neural stem cells strongly promotes FGF2-dependent neuronal differentiation. Furthermore, expression of this FGFR1-Δ6 mutant in zebrafish embryos disrupts anterior neuronal patterning (head development), consistent with excessive FGFR1 signalling. These results identify Nedd4-1 as a key regulator of FGFR1 endocytosis and signalling during neuronal differentiation and embryonic development.


Asunto(s)
Endocitosis/fisiología , Complejos de Clasificación Endosomal Requeridos para el Transporte/fisiología , Procesamiento Proteico-Postraduccional , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/fisiología , Ubiquitina-Proteína Ligasas/fisiología , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Sitios de Unión , Tipificación del Cuerpo/fisiología , Diferenciación Celular/fisiología , Sistema Nervioso Central/embriología , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Técnicas de Silenciamiento del Gen , Humanos , Datos de Secuencia Molecular , Ubiquitina-Proteína Ligasas Nedd4 , Neuronas/citología , Fragmentos de Péptidos/metabolismo , Unión Proteica , Mapeo de Interacción de Proteínas , Transporte de Proteínas , Ratas , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/química , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Proteínas Recombinantes de Fusión/fisiología , Transducción de Señal/fisiología , Especificidad de la Especie , Células Madre/citología , Especificidad por Sustrato , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación , Pez Cebra/embriología
10.
PLoS Genet ; 8(8): e1002849, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22876193

RESUMEN

Since the beginnings of domestication, the craniofacial architecture of the domestic dog has morphed and radiated to human whims. By beginning to define the genetic underpinnings of breed skull shapes, we can elucidate mechanisms of morphological diversification while presenting a framework for understanding human cephalic disorders. Using intrabreed association mapping with museum specimen measurements, we show that skull shape is regulated by at least five quantitative trait loci (QTLs). Our detailed analysis using whole-genome sequencing uncovers a missense mutation in BMP3. Validation studies in zebrafish show that Bmp3 function in cranial development is ancient. Our study reveals the causal variant for a canine QTL contributing to a major morphologic trait.


Asunto(s)
Proteína Morfogenética Ósea 3/genética , Craneosinostosis/genética , Perros/genética , Variación Genética , Sitios de Carácter Cuantitativo , Cráneo/metabolismo , Animales , Evolución Biológica , Cruzamiento , Mapeo Cromosómico , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Mutación Missense , Mascotas , Fenotipo , Cráneo/anatomía & histología , Pez Cebra/genética
11.
Hum Mol Genet ; 20(10): 2058-70, 2011 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-21389084

RESUMEN

Budding uninhibited by benzimidazole-related 1 (BUBR1) is a central molecule of the spindle assembly checkpoint. Germline mutations in the budding uninhibited by benzimidazoles 1 homolog beta gene encoding BUBR1 cause premature chromatid separation (mosaic variegated aneuploidy) [PCS (MVA)] syndrome, which is characterized by constitutional aneuploidy and a high risk of childhood cancer. Patients with the syndrome often develop Dandy-Walker complex and polycystic kidneys; implying a critical role of BUBR1 in morphogenesis. However, little is known about the function of BUBR1 other than mitotic control. Here, we report that BUBR1 is essential for the primary cilium formation, and that the PCS (MVA) syndrome is thus a novel ciliopathy. Morpholino knockdown of bubr1 in medaka fish also caused ciliary dysfunction characterized by defects in cerebellar development and perturbed left-right asymmetry of the embryo. Biochemical analyses demonstrated that BUBR1 is required for ubiquitin-mediated proteasomal degradation of cell division cycle protein 20 in the G0 phase and maintains anaphase-promoting complex/cyclosome-CDC20 homolog 1 activity that regulates the optimal level of dishevelled for ciliogenesis.


Asunto(s)
Cilios/metabolismo , Cilios/patología , Estructuras Citoplasmáticas/patología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Ciclosoma-Complejo Promotor de la Anafase , Animales , Proteínas Cdc20 , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Cerebelo/metabolismo , Cerebelo/patología , Trastornos de los Cromosomas/genética , Trastornos de los Cromosomas/fisiopatología , Estructuras Citoplasmáticas/metabolismo , Proteínas Dishevelled , Perros , Técnicas de Silenciamiento del Gen , Humanos , Ratones , Modelos Biológicos , Mosaicismo , Oryzias , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Unión Proteica , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/genética , Estabilidad Proteica , Transducción de Señal , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Vertebrados/genética , Vertebrados/metabolismo , Proteínas Wnt/metabolismo
12.
Development ; 137(15): 2551-8, 2010 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-20554720

RESUMEN

The vertebrate limb bud arises from lateral plate mesoderm and its overlying ectoderm. Despite progress regarding the genetic requirements for limb development, morphogenetic mechanisms that generate early outgrowth remain relatively undefined. We show by live imaging and lineage tracing in different vertebrate models that the lateral plate contributes mesoderm to the early limb bud through directional cell movement. The direction of cell motion, longitudinal cell axes and bias in cell division planes lie largely parallel to one another along the rostrocaudal (head-tail) axis in lateral plate mesoderm. Transition of these parameters from a rostrocaudal to a mediolateral (outward from the body wall) orientation accompanies early limb bud outgrowth. Furthermore, we provide evidence that Wnt5a acts as a chemoattractant in the emerging limb bud where it contributes to the establishment of cell polarity that is likely to underlie the oriented cell behaviours.


Asunto(s)
División Celular , Movimiento Celular , Extremidades/embriología , Regulación del Desarrollo de la Expresión Génica , Proteínas Wnt/metabolismo , Proteínas de Xenopus/metabolismo , Animales , Linaje de la Célula , Embrión de Pollo , Mesodermo/metabolismo , Ratones , Ratones Transgénicos , Microscopía Confocal/métodos , Modelos Biológicos , Morfogénesis , Proteína Wnt-5a , Pez Cebra
13.
Nature ; 450(7167): E1-2; discussion E2-4, 2007 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-17994032

RESUMEN

In fish and amphibians, the dorsal axis is specified by the asymmetric localization of maternally provided components of the Wnt signalling pathway. Gore et al. suggest that the Nodal signal Squint (Sqt) is required as a maternally provided dorsal determinant in zebrafish. Here we test their proposal and show that the maternal activities of sqt and the related Nodal gene cyclops (cyc) are not required for dorsoventral patterning.


Asunto(s)
Tipificación del Cuerpo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Embrión no Mamífero/metabolismo , Femenino , Péptidos y Proteínas de Señalización Intracelular/genética , Modelos Biológicos , Madres , Ligandos de Señalización Nodal , Ovario/metabolismo , Óvulo/metabolismo , Empalme del ARN , Reproducibilidad de los Resultados , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
14.
Sci Adv ; 9(40): eadi8317, 2023 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-37792934

RESUMEN

Several genetically encoded sensors have been developed to study live cell NADPH/NADP+ dynamics, but their use has been predominantly in vitro. Here, we developed an in vivo assay using the Apollo-NADP+ sensor and microfluidic devices to measure endogenous NADPH/NADP+ dynamics in the pancreatic ß cells of live zebrafish embryos. Flux through the pentose phosphate pathway, the main source of NADPH in many cell types, has been reported to be low in ß cells. Thus, it is unclear how these cells compensate to meet NADPH demands. Using our assay, we show that pyruvate cycling is the main source of NADP+ reduction in ß cells, with contributions from folate cycling after acute electrical activation. INS1E ß cells also showed a stress-induced increase in folate cycling and further suggested that this cycling requires both increased glycolytic intermediates and cytosolic NAD+. Overall, we show in vivo application of the Apollo-NADP+ sensor and reveal that ß cells are capable of adapting NADPH/NADP+ redox during stress.


Asunto(s)
Células Secretoras de Insulina , Animales , NADP/metabolismo , Pez Cebra/metabolismo , Oxidación-Reducción , Ácido Fólico/metabolismo
15.
Dis Model Mech ; 16(10)2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37675454

RESUMEN

Biliary atresia is a fibroinflammatory neonatal disease with no effective therapies. A subset of cases (10-20%) is associated with laterality defects - labeled biliary atresia splenic malformation (BASM) syndrome. Recently, whole-exome sequencing of patients with BASM identified deleterious variants in PKD1L1. PKD1L1 is involved in left-right axis determination; however, its role in cholangiocytes is unknown. We generated the pkd1l1hsc117 allele using CRISPR/Cas9 mutagenesis in zebrafish to determine the role of Pkd1l1 in biliary development and function. Wild-type and mutant larvae were assessed for laterality defects, biliary function and biliary tree architecture at 5 days post fertilization. pkd1l1hsc117 mutant larvae exhibited early left-right patterning defects. The gallbladder was positioned on the left in 47% of mutants compared to 4% of wild-type larvae. Accumulation of PED6 in the gallbladder, an indicator of hepatobiliary function, was significantly reduced in pkd1l1hsc117 mutants (46%) compared to wild-type larvae (4%). pkd1l1hsc117 larvae exhibited fewer biliary epithelial cells and reduced density of the intrahepatic biliary network compared to those in wild-type larvae. These data highlight the essential role of pkd1l1 in normal development and function of the zebrafish biliary system, supporting a role for this gene as a cause of BASM.


Asunto(s)
Anomalías Múltiples , Atresia Biliar , Sistema Biliar , Pez Cebra , Animales , Proteínas de la Membrana/genética , Bazo , Pez Cebra/genética
16.
Nature ; 439(7073): 220-4, 2006 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-16407953

RESUMEN

Environmental and genetic aberrations lead to neural tube closure defects (NTDs) in 1 out of every 1,000 births. Mouse and frog models for these birth defects have indicated that Van Gogh-like 2 (Vangl2, also known as Strabismus) and other components of planar cell polarity (PCP) signalling might control neurulation by promoting the convergence of neural progenitors to the midline. Here we show a novel role for PCP signalling during neurulation in zebrafish. We demonstrate that non-canonical Wnt/PCP signalling polarizes neural progenitors along the anteroposterior axis. This polarity is transiently lost during cell division in the neural keel but is re-established as daughter cells reintegrate into the neuroepithelium. Loss of zebrafish Vangl2 (in trilobite mutants) abolishes the polarization of neural keel cells, disrupts re-intercalation of daughter cells into the neuroepithelium, and results in ectopic neural progenitor accumulations and NTDs. Remarkably, blocking cell division leads to rescue of trilobite neural tube morphogenesis despite persistent defects in convergence and extension. These results reveal a function for PCP signalling in coupling cell division and morphogenesis at neurulation and indicate a previously unrecognized mechanism that might underlie NTDs.


Asunto(s)
Polaridad Celular , Morfogénesis , Sistema Nervioso/citología , Sistema Nervioso/embriología , Neuronas/citología , Transducción de Señal , Pez Cebra/embriología , Animales , División Celular , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mutación/genética , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
17.
iScience ; 25(9): 105028, 2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36105588

RESUMEN

Idiopathic scoliosis (IS) refers to abnormal spinal curvatures that occur in the absence of vertebral or neuromuscular defects. IS accounts for 80% of human spinal deformity, afflicts ∼3% of children worldwide, yet pathogenic mechanisms are poorly understood. A key role for cerebrospinal fluid (CSF) homeostasis in zebrafish spine development has been identified. Specifically, defects in cilia motility of brain ependymal cells (EC), CSF flow, and/or Reissner fiber (RF) assembly are observed to induce neuroinflammation, oxidative stress, abnormal CSF-contacting neuron activity, and urotensin peptide expression, all associating with scoliosis. However, the functional relevance of these observations to IS remains unclear. Here we characterize zebrafish katnb1 mutants as a new IS model. We define essential roles for Katnb1 in motile ciliated lineages, uncouple EC cilia and RF formation defects from spinal curvature, and identify abnormal CSF flow and cell stress responses as shared pathogenic signatures associated with scoliosis across diverse zebrafish models.

18.
Nat Commun ; 13(1): 5598, 2022 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-36151137

RESUMEN

Tissue-wide coordination of polarized cytoskeletal organization and cell behaviour, critical for normal development, is controlled by asymmetric membrane localization of non-canonical Wnt/planar cell polarity (PCP) signalling components. Understanding the dynamic regulation of PCP thus requires visualization of these polarity proteins in vivo. Here we utilize CRISPR/Cas9 genome editing to introduce a fluorescent reporter onto the core PCP component, Vangl2, in zebrafish. Through live imaging of endogenous sfGFP-Vangl2 expression, we report on the authentic regulation of vertebrate PCP during embryogenesis. Furthermore, we couple sfGFP-Vangl2 with conditional zGrad GFP-nanobody degradation methodologies to interrogate tissue-specific functions for PCP. Remarkably, loss of Vangl2 in foxj1a-positive cell lineages causes ependymal cell cilia and Reissner fiber formation defects as well as idiopathic-like scoliosis. Together, our studies provide crucial insights into the establishment and maintenance of vertebrate PCP and create a powerful experimental paradigm for investigating post-embryonic and tissue-specific functions for Vangl2 in development and disease.


Asunto(s)
Polaridad Celular , Pez Cebra , Animales , Polaridad Celular/genética , Desarrollo Embrionario/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
19.
Curr Biol ; 30(12): 2363-2373.e6, 2020 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-32386528

RESUMEN

Adolescent idiopathic scoliosis (AIS) affects 3% to 4% of children between the ages of 11 and 18 [1, 2]. This disorder, characterized by abnormal three-dimensional spinal curvatures that typically develop during periods of rapid growth, occurs in the absence of congenital vertebral malformations or neuromuscular defects [1]. Genetic heterogeneity [3] and a historical lack of appropriate animal models [4] have confounded basic understanding of AIS biology; thus, treatment options remain limited [5, 6]. Recently, genetic studies using zebrafish have linked idiopathic-like scoliosis to irregularities in motile cilia-mediated cerebrospinal fluid flow [7-9]. However, because loss of cilia motility in human primary ciliary dyskinesia patients is not fully associated with scoliosis [10, 11], other pathogenic mechanisms remain to be determined. Here, we demonstrate that zebrafish scospondin (sspo) mutants develop late-onset idiopathic-like spinal curvatures in the absence of obvious cilia motility defects. Sspo is a large secreted glycoprotein functionally associated with the subcommissural organ and Reissner's fiber [12]-ancient and enigmatic organs of the brain ventricular system reported to govern cerebrospinal fluid homeostasis [13, 14], neurogenesis [12, 15-18], and embryonic morphogenesis [19]. We demonstrate that irregular deposition of Sspo within brain ventricles is associated with idiopathic-like scoliosis across diverse genetic models. Furthermore, Sspo defects are sufficient to induce oxidative stress and neuroinflammatory responses implicated in AIS pathogenesis [9]. Through screening for chemical suppressors of sspo mutant phenotypes, we also identify potent agents capable of blocking severe juvenile spine deformity. Our work thus defines a new preclinical model of AIS and provides tools to realize novel therapeutic strategies.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/genética , Ventrículos Cerebrales/metabolismo , Inflamación/fisiopatología , Morfogénesis , Médula Espinal/inmunología , Columna Vertebral/crecimiento & desarrollo , Pez Cebra/anomalías , Animales , Moléculas de Adhesión Celular Neuronal/metabolismo , Modelos Animales de Enfermedad , Humanos , Médula Espinal/anomalías , Médula Espinal/crecimiento & desarrollo , Columna Vertebral/anomalías , Pez Cebra/crecimiento & desarrollo
20.
Sci Adv ; 6(35): eabb4591, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32923640

RESUMEN

Human genome-wide association studies have linked single-nucleotide polymorphisms (SNPs) in NEMP1 (nuclear envelope membrane protein 1) with early menopause; however, it is unclear whether NEMP1 has any role in fertility. We show that whole-animal loss of NEMP1 homologs in Drosophila, Caenorhabditis elegans, zebrafish, and mice leads to sterility or early loss of fertility. Loss of Nemp leads to nuclear shaping defects, most prominently in the germ line. Biochemical, biophysical, and genetic studies reveal that NEMP proteins support the mechanical stiffness of the germline nuclear envelope via formation of a NEMP-EMERIN complex. These data indicate that the germline nuclear envelope has specialized mechanical properties and that NEMP proteins play essential and conserved roles in fertility.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA