Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(15)2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37569263

RESUMEN

Hydrogen sulfide (H2S), known for many decades exclusively for its toxicity and the smell of rotten eggs, has been re-discovered for its pleiotropic effects at the cardiovascular and non-cardiovascular level. Therefore, great attention is being paid to the discovery of molecules able to release H2S in a smart manner, i.e., slowly and for a long time, thus ensuring the maintenance of its physiological levels and preventing "H2S-poor" diseases. Despite the development of numerous synthetically derived molecules, the observation that plants containing sulfur compounds share the same pharmacological properties as H2S led to the characterization of naturally derived compounds as H2S donors. In this regard, polysulfuric compounds occurring in plants belonging to the Alliaceae family were the first characterized as H2S donors, followed by isothiocyanates derived from vegetables belonging to the Brassicaceae family, and this led us to consider these plants as nutraceutical tools and their daily consumption has been demonstrated to prevent the onset of several diseases. Interestingly, sulfur compounds are also contained in many fungi. In this review, we speculate about the possibility that they may be novel sources of H2S-donors, furnishing new data on the release of H2S from several selected extracts from fungi.

2.
Int J Mol Sci ; 24(11)2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37298226

RESUMEN

Adipose tissue (AT) can be classified into two different types: (i) white adipose tissue (WAT), which represents the largest amount of total AT, and has the main function of storing fatty acids for energy needs and (ii) brown adipose tissue (BAT), rich in mitochondria and specialized in thermogenesis. Many exogenous stimuli, e.g., cold, exercise or pharmacological/nutraceutical tools, promote the phenotypic change of WAT to a beige phenotype (BeAT), with intermediate characteristics between BAT and WAT; this process is called "browning". The modulation of AT differentiation towards WAT or BAT, and the phenotypic switch to BeAT, seem to be crucial steps to limit weight gain. Polyphenols are emerging as compounds able to induce browning and thermogenesis processes, potentially via activation of sirtuins. SIRT1 (the most investigated sirtuin) activates a factor involved in mitochondrial biogenesis, peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), which, through peroxisome proliferator-activated receptor γ (PPAR-γ) modulation, induces typical genes of BAT and inhibits genes of WAT during the transdifferentiation process in white adipocytes. This review article aims to summarize the current evidence, from pre-clinical studies to clinical trials, on the ability of polyphenols to promote the browning process, with a specific focus on the potential role of sirtuins in the pharmacological/nutraceutical effects of natural compounds.


Asunto(s)
Sirtuinas , Humanos , Polifenoles/farmacología , PPAR gamma , Obesidad , Tejido Adiposo Blanco/fisiología , Tejido Adiposo Pardo/fisiología , Termogénesis/genética
3.
Int J Mol Sci ; 24(22)2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-38003321

RESUMEN

Metformin (Met) is the first-line therapy in type 2 diabetes mellitus but, in last few years, it has also been evaluated as anti-cancer agent. Several pathways, such as AMPK or PI3K/Akt/mTOR, are likely to be involved in the anti-cancer Met activity. In addition, hydrogen sulfide (H2S) and H2S donors have been described as anti-cancer agents affecting cell-cycle and inducing apoptosis. Among H2S donors, isothiocyanates are endowed with a further anti-cancer mechanism: the inhibition of the histone deacetylase enzymes. On this basis, a hybrid molecule (Met-ITC) obtained through the addition of an isothiocyanate moiety to the Met molecule was designed and its ability to release Met has been demonstrated. Met-ITC exhibited more efficacy and potency than Met in inhibiting cancer cells (AsPC-1, MIA PaCa-2, MCF-7) viability and it was less effective on non-tumorigenic cells (MCF 10-A). The ability of Met-ITC to release H2S has been recorded both in cell-free and in cancer cells assays. Finally, its ability to affect the cell cycle and to induce both early and late apoptosis has been demonstrated on the most sensitive cell line (MCF-7). These results confirmed that Met-ITC is a new hybrid molecule endowed with potential anti-cancer properties derived both from Met and H2S.


Asunto(s)
Diabetes Mellitus Tipo 2 , Sulfuro de Hidrógeno , Metformina , Neoplasias , Humanos , Metformina/farmacología , Fosfatidilinositol 3-Quinasas , Neoplasias/tratamiento farmacológico , Línea Celular , Isotiocianatos/farmacología , Sulfuro de Hidrógeno/farmacología , Sulfuro de Hidrógeno/metabolismo
4.
Phytother Res ; 36(6): 2616-2627, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35478197

RESUMEN

Eruca sativa Mill. is an edible plant belonging to the Brassicaceae botanical family with a long story as a medicinal material, mainly linked to the presence of glucoerucin. One of the main products of this glucosinolate is erucin, a biologicallly active isothiocyanate recently recognized as a hydrogen sulfide (H2 S) donor. In this work, an Eruca sativa extract has been obtained from a defatted seed meal (DSM), achieving a powder rich in thiofunctionalized glucosinolates, glucoerucin, and glucoraphanin, accounting for 95% and 5% of the total glucosinolate content (17% on a dry weight basis), associated with 13 identified phenolic acids and flavonoids accounting for 2.5%. In a cell-free model, Eruca sativa DSM extract slowly released H2 S. Moreover, this extract promoted significant hypotensive effects in hypertensive rats, and evoked dose-dependent cardioprotection in in vivo model of acute myocardial infarct, obtained through a reversible coronary occlusion. This latter effect was sensitive to blockers of mitochondrial KATP and Kv7.4 potassium channels, suggesting a potential role of these mitochondrial channels in the protective effects of Eruca sativa DSM extract. Accordingly, Eruca sativa DSM extract reduced calcium uptake and apoptotic cell death in isolated cardiac mitochondria. Taken together, these results demonstrate that Eruca sativa DSM extract is endowed with an interesting nutraceutical profile on the cardiovascular system due to, at least in part, its H2 S releasing properties. These results pave the way for future investigations on active metabolites.


Asunto(s)
Brassicaceae , Sistema Cardiovascular , Sulfuro de Hidrógeno , Animales , Glucosinolatos , Sulfuro de Hidrógeno/farmacología , Extractos Vegetales/farmacología , Ratas , Semillas
5.
Int J Mol Sci ; 23(22)2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36430281

RESUMEN

Glaucoma is a group of eye diseases consisting of optic nerve damage with corresponding loss of field vision and blindness. Hydrogen sulfide (H2S) is a gaseous neurotransmitter implicated in various pathophysiological processes. It is involved in the pathological mechanism of glaucomatous neuropathy and exerts promising effects in the treatment of this disease. In this work, we designed and synthetized new molecular hybrids between antiglaucoma drugs and H2S donors to combine the pharmacological effect of both moieties, providing a heightened therapy. Brinzolamide, betaxolol and brimonidine were linked to different H2S donors. The H2S-releasing properties of the new compounds were evaluated in a phosphate buffer solution by the amperometric approach, and evaluated in human primary corneal epithelial cells (HCEs) by spectrofluorometric measurements. Experimental data showed that compounds 1c, 1d and 3d were the hybrids with the best properties, characterized by a significant and long-lasting production of the gasotransmitter both in the aqueous solution (in the presence of L-cysteine) and in the intracellular environment. Because, to date, the donation of H2S by antiglaucoma H2S donor hybrids using non-immortalized corneal cells has never been reported, these results pave the way to further investigation of the potential efficacy of the newly synthesized compounds.


Asunto(s)
Gasotransmisores , Glaucoma , Sulfuro de Hidrógeno , Humanos , Agentes Antiglaucoma , Betaxolol/farmacología , Betaxolol/uso terapéutico , Gasotransmisores/uso terapéutico , Glaucoma/tratamiento farmacológico , Sulfuro de Hidrógeno/farmacología , Sulfuro de Hidrógeno/uso terapéutico
6.
Int J Mol Sci ; 23(24)2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36555238

RESUMEN

Vascular inflammation (VI) represents a pathological condition that progressively affects the integrity and functionality of the vascular wall, thus leading to endothelial dysfunction and the onset of several cardiovascular diseases. Therefore, the research of novel compounds able to prevent VI represents a compelling need. In this study, we tested erucin, the natural isothiocyanate H2S-donor derived from Eruca sativa Mill. (Brassicaceae), in an in vivo mouse model of lipopolysaccharide (LPS)-induced peritonitis, where it significantly reduced the amount of emigrated CD11b positive neutrophils. We then evaluated the anti-inflammatory effects of erucin in LPS-challenged human umbilical vein endothelial cells (HUVECs). The pre-incubation of erucin, before LPS treatment (1, 6, 24 h), significantly preserved cell viability and prevented the increase of reactive oxygen species (ROS) and tumor necrosis factor alpha (TNF-α) levels. Moreover, erucin downregulated endothelial hyperpermeability and reduced the loss of vascular endothelial (VE)-Cadherin levels. In addition, erucin decreased vascular cell adhesion molecule 1 (VCAM-1), cyclooxygenase-2 (COX-2) and microsomal prostaglandin E-synthase 1 (mPGES-1) expression. Of note, erucin induced eNOS phosphorylation and counteracted LPS-mediated NF-κB nuclear translocation, an effect that was partially abolished in the presence of the eNOS inhibitor L-NAME. Therefore, erucin can control endothelial function through biochemical and genomic positive effects against VI.


Asunto(s)
Endotelio Vascular , Transducción de Señal , Humanos , Ratones , Animales , Endotelio Vascular/metabolismo , Lipopolisacáridos/farmacología , FN-kappa B/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Molécula 1 de Adhesión Celular Vascular/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/metabolismo
7.
Molecules ; 27(19)2022 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-36235072

RESUMEN

Sirtuin 1 (SIRT1) is a NAD+-dependent deacetylase implicated in various biological and pathological processes, including cancer, diabetes, and cardiovascular diseases. In recent years, SIRT1-activating compounds have been demonstrated to exert cardioprotective effects. Therefore, this enzyme has become a feasible target to treat cardiovascular diseases, and many SIRT1 activators, of a natural or synthetic origin, have been identified. In the present work, we developed thiazole-based SIRT1 activators, which showed remarkably higher SIRT1 activation potencies compared with those of the reference compound resveratrol when tested in enzymatic assays. Thiazole 8, a representative compound of this series, was also subjected to further pharmacological investigations, where it was proven to reduce myocardial damage induced by an in vivo occlusion/reperfusion event, thus confirming its cardioprotective properties. In addition, the cardioprotective effect of compound 8 was significantly higher than that of resveratrol. Molecular modeling studies suggest the binding mode of these derivatives within SIRT1 in the presence of the p53-AMC peptide. These promising results could pave the way to further expand and optimize this chemical class of new and potent SIRT1 activators as potential cardioprotective agents.


Asunto(s)
Enfermedades Cardiovasculares , Estilbenos , Cardiotónicos/farmacología , Humanos , NAD/metabolismo , Péptidos/química , Resveratrol/química , Resveratrol/farmacología , Sirtuina 1/metabolismo , Estilbenos/química , Tiazoles/farmacología , Proteína p53 Supresora de Tumor/metabolismo
8.
Mar Drugs ; 19(6)2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-34073184

RESUMEN

Euphausia superba, commonly known as krill, is a small marine crustacean from the Antarctic Ocean that plays an important role in the marine ecosystem, serving as feed for most fish. It is a known source of highly bioavailable omega-3 polyunsaturated fatty acids (eicosapentaenoic acid and docosahexaenoic acid). In preclinical studies, krill oil showed metabolic, anti-inflammatory, neuroprotective and chemo preventive effects, while in clinical trials it showed significant metabolic, vascular and ergogenic actions. Solvent extraction is the most conventional method to obtain krill oil. However, different solvents must be used to extract all lipids from krill because of the diversity of the polarities of the lipid compounds in the biomass. This review aims to provide an overview of the chemical composition, bioavailability and bioaccessibility of krill oil, as well as the mechanisms of action, classic and non-conventional extraction techniques, health benefits and current applications of this marine crustacean.


Asunto(s)
Antiinflamatorios , Antineoplásicos , Suplementos Dietéticos , Euphausiacea , Ácidos Grasos Omega-3 , Aceites de Pescado/química , Fármacos Neuroprotectores , Animales , Antiinflamatorios/farmacocinética , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antineoplásicos/farmacocinética , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Ejercicio Físico , Ácidos Grasos Omega-3/farmacocinética , Ácidos Grasos Omega-3/farmacología , Ácidos Grasos Omega-3/uso terapéutico , Aceites de Pescado/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Humanos , Enfermedades Inflamatorias del Intestino/dietoterapia , Enfermedades Inflamatorias del Intestino/prevención & control , Enfermedades Metabólicas/dietoterapia , Enfermedades Metabólicas/prevención & control , Fármacos Neuroprotectores/farmacocinética , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico
9.
Pharmacol Res ; 160: 105125, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32783975

RESUMEN

Cardiovascular diseases are the main cause of morbidity and mortality in the Western society and ageing is a relevant non-modifiable risk factor. Morphological and functional alterations at endothelial level represent first events of ageing, inevitably followed by vascular dysfunction and consequent atherosclerosis that deeply influences cardiovascular health. Indeed, myocardial hypertrophy and fibrosis typically occur and contribute to compromise overall cardiac output. As regards the intracellular molecular mechanisms involved in the cardiovascular ageing, an intricate network is emerging, revealing a role for many mediators, including SIRT1/AMPK/PCG1α pathway, anti-oxidants factors (i.e. Nrf-2 and FOXOs) and pro-inflammatory cytokines. Thus, the search for pharmacological and non-pharmacological strategies that can promote a "healthy ageing", in order to slow down age-related machinery, are currently an exciting challenge for the biomedical research. Interestingly, hydrogen sulfide (H2S) has been recently recognized as a new player capable to influence intracellular machinery involved in ageing and then it is view as a potential target for preventing cardiovascular diseases. Therefore, this review is focused on the role of H2S in cardiovascular ageing, and on the evidence of the relationship between progressive decline in endogenous H2S levels and the onset of various cardiovascular age-related diseases.


Asunto(s)
Envejecimiento/fisiología , Fenómenos Fisiológicos Cardiovasculares , Sistema Cardiovascular/crecimiento & desarrollo , Sulfuro de Hidrógeno/metabolismo , Animales , Humanos
10.
Pharmacol Res ; 159: 105039, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32565313

RESUMEN

The gasotransmitter hydrogen sulfide (H2S) is involved in the regulation of the vascular tone and an impairment of its endogenous production may play a role in hypertension. Thus, the administration of exogenous H2S may be a possible novel and effective strategy to control blood pressure. Some natural and synthetic sulfur compounds are suitable H2S-donors, exhibiting long-lasting H2S release; however, novel H2S-releasing agents are needed to improve the pharmacological armamentarium for the treatment of cardiovascular diseases. For this purpose, N-phenylthiourea (PTU) and N,N'-diphenylthiourea (DPTU) compounds have been investigated as potential H2S-donors. The thioureas showed long-lasting H2S donation in cell free environment and in human aortic smooth muscle cells (HASMCs). In HASMCs, DPTU caused membrane hyperpolarization, mediated by activation of KATP and Kv7 potassium channels. The thiourea derivatives promoted vasodilation in rat aortic rings, which was abolished by KATP and Kv7 blockers. The vasorelaxing effects were also observed in angiotensin II-constricted coronary vessels. In conclusion, thiourea represents an original H2S-donor functional group, which releases H2S with slow and long lasting kinetic, and promotes typical H2S-mediated vascular effects. Such a moiety will be extremely useful for developing original cardiovascular drugs and new chemical tools for investigating the pharmacological roles of H2S.


Asunto(s)
Sulfuro de Hidrógeno/farmacología , Músculo Liso Vascular/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Feniltiourea/farmacología , Tiourea/análogos & derivados , Vasodilatación/efectos de los fármacos , Vasodilatadores/farmacología , Animales , Aorta/efectos de los fármacos , Aorta/metabolismo , Presión Sanguínea/efectos de los fármacos , Células Cultivadas , Vasos Coronarios/efectos de los fármacos , Vasos Coronarios/metabolismo , Humanos , Preparación de Corazón Aislado , Canales KATP/agonistas , Canales KATP/metabolismo , Canales de Potasio KCNQ/agonistas , Canales de Potasio KCNQ/metabolismo , Masculino , Potenciales de la Membrana , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Ratas Wistar , Tiourea/farmacología
11.
Pharmacol Res ; 158: 104905, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32416213

RESUMEN

Androgen levels inversely correlate with the incidence, susceptibility and severity of asthma. However, whether male sex hormones such as 5α-dihydrotestosterone (DHT) have beneficial effects on asthma symptoms and/or could affect asthma susceptibility have not been investigated. DHT administration to female mice, during the sensitization phase, abrogates the sex bias in bronchial hyperreactivity. This effect correlates with inhibition of leukotriene biosynthesis in the lung. DHT significantly inhibits also other asthma-like features such as airway hyperplasia and mucus production in sensitized female mice. Conversely, DHT does not affect plasma IgE levels as well as CD3+CD4+ IL-4+ cell and IgE+c-Kit+ cell infiltration within the lung but prevents pulmonary mast cell activation. The in vitro study on RBL-2H3 cells confirms that DHT inhibits mast cell degranulation. In conclusion, our data demonstrate that immunomodulatory effects of DHT on mast cell activation prevent the translation of allergen sensitization into clinical manifestation of asthma.


Asunto(s)
Andrógenos/uso terapéutico , Asma/tratamiento farmacológico , Dihidrotestosterona/uso terapéutico , Factores Inmunológicos/uso terapéutico , Caracteres Sexuales , Andrógenos/farmacología , Animales , Asma/inducido químicamente , Asma/inmunología , Hiperreactividad Bronquial/inducido químicamente , Hiperreactividad Bronquial/tratamiento farmacológico , Hiperreactividad Bronquial/inmunología , Línea Celular , Dihidrotestosterona/farmacología , Femenino , Factores Inmunológicos/farmacología , Masculino , Mastocitos/efectos de los fármacos , Mastocitos/inmunología , Ratones , Ratones Endogámicos BALB C , Ovalbúmina/toxicidad
12.
Int J Mol Sci ; 21(17)2020 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-32867069

RESUMEN

BACKGROUND: Remarkable deregulation of several microRNAs (miRNAs) is demonstrated in cutaneous melanoma. hsa-miR-193a-3p is reported to be under-expressed in tissues and in plasma of melanoma patients, but the role of both miR-193a arms in melanoma is not known yet. METHODS: After observing the reduced levels of miR-193a arms in plasma exosomes of melanoma patients, the effects of hsa-miR-193a-3p and -5p transfection in cutaneous melanoma cell lines are investigated. RESULTS: In melanoma cell lines A375, 501Mel, and MeWo, the ectopic over-expression of miR-193a arms significantly reduced cell viability as well as the expression of genes involved in proliferation (ERBB2, KRAS, PIK3R3, and MTOR) and apoptosis (MCL1 and NUSAP1). These functional features were accompanied by a significant downregulation of Akt and Erk pathways and a strong increase in the apoptotic process. Since in silico databases revealed TROY, an orphan member of the tumor necrosis receptor family, as a potential direct target of miR-193a-5p, this possibility was investigated using the luciferase assay and excluded by our results. CONCLUSIONS: Our results underline a relevant role of miR-193a, both -3p and -5p, as tumor suppressors clarifying the intracellular mechanisms involved and suggesting that their ectopic over-expression could represent a novel treatment for cutaneous melanoma patients.


Asunto(s)
Regulación hacia Abajo , Melanoma/genética , MicroARNs/genética , Neoplasias Cutáneas/genética , Regiones no Traducidas 3' , Estudios de Casos y Controles , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular , Exosomas/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Masculino , Melanoma/sangre , Persona de Mediana Edad , Transducción de Señal , Neoplasias Cutáneas/sangre , Melanoma Cutáneo Maligno
13.
Int J Mol Sci ; 21(10)2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-32429301

RESUMEN

Increasing evidence suggests that intestinal dysfunctions may represent early events in Alzheimer's disease and contribute to brain pathology. This study examined the relationship between onset of cognitive impairment and colonic dysfunctions in a spontaneous AD model before the full development of brain pathology. SAMP8 mice underwent Morris water maze and assessment of faecal output at four, six and eight months of age. In vitro colonic motility was examined. Faecal and colonic Aß, tau proteins, α-synuclein and IL-1ß were assessed by ELISA. Colonic citrate synthase activity was assessed by spectrophotometry. Colonic NLRP3, caspase-1 and ASC expression were evaluated by Western blotting. Colonic eosinophil density and claudin-1 expression were evaluated by immunohistochemistry. The effect of Aß on NLRP3 signalling and mitochondrial function was tested in cultured cells. Cognitive impairment and decreased faecal output occurred in SAMP8 mice from six months. When compared with SAMR1, SAMP8 animals displayed: (1) impaired in vitro colonic contractions; (2) increased enteric AD-related proteins, IL-1ß, active-caspase-1 expression and eosinophil density; and (3) decreased citrate synthase activity and claudin-1 expression. In THP-1 cells, Aß promoted IL-1ß release, which was abrogated upon incubation with caspase-1 inhibitor or in ASC-/- cells. Aß decreased mitochondrial function in THP-1 cells. In SAMP8, enteric AD-related proteins deposition, inflammation and impaired colonic excitatory neurotransmission, occurring before the full brain pathology development, could contribute to bowel dysmotility and represent prodromal events in AD.


Asunto(s)
Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/fisiopatología , Colon/patología , Colon/fisiopatología , Motilidad Gastrointestinal , Inflamación/patología , Proteínas del Tejido Nervioso/metabolismo , Síntomas Prodrómicos , Péptidos beta-Amiloides/metabolismo , Animales , Proteínas Adaptadoras de Señalización CARD/metabolismo , Caspasa 1/metabolismo , Claudina-1/metabolismo , Cognición , Eosinófilos/patología , Heces , Conducta Alimentaria , Humanos , Inflamasomas/metabolismo , Interleucina-1beta/metabolismo , Mucosa Intestinal/patología , Ratones , Mitocondrias/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Agregado de Proteínas , Células THP-1 , alfa-Sinucleína/metabolismo , Proteínas tau/metabolismo
14.
Bioconjug Chem ; 30(3): 614-620, 2019 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-30609890

RESUMEN

H2S donors are currently emerging as promising therapeutic agents in a wide variety of pathologies, including tumors. Cancer cells are characterized by an enhanced uptake of sugars, such as glucose. Therefore, novel glycoconjugated H2S donors were synthesized so that high concentrations of H2S can be selectively achieved therein. Dithiolethione portions or isothiocyanate portions were selected for their well-known H2S-releasing properties in the presence of biological substrates. A synthetic procedure employing trichloroacetimidate glycosyl donors was applied to produce, in a stereoselective fashion, C1-glycoconjugates, whereas C6-glycoconjugates were obtained by a Mitsunobu-based transformation. The resulting molecules were then tested for their anticancer effects on human pancreas adenocarcinoma ascites metastasis cell line AsPC-1. The most potent inhibitors of cell viability (6aß and 7b) proved to release H2S inside the AsPC-1 cells and to alter the basal cell cycle.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Glicoconjugados/química , Glicoconjugados/farmacología , Sulfuro de Hidrógeno/farmacología , Adenocarcinoma/tratamiento farmacológico , Antineoplásicos/síntesis química , Línea Celular Tumoral , Glicoconjugados/síntesis química , Humanos , Sulfuro de Hidrógeno/administración & dosificación , Isotiocianatos/síntesis química , Isotiocianatos/química , Isotiocianatos/farmacología , Neoplasias Pancreáticas/tratamiento farmacológico , Estereoisomerismo , Tionas/síntesis química , Tionas/química , Tionas/farmacología , Neoplasias Pancreáticas
15.
Phytother Res ; 33(3): 845-855, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30632211

RESUMEN

Plants of the Brassicaceae family are well-known for containing the glucosinolate myrosinase system, which is able to release isothiocyanates after plant biotic and abiotic lesions. Erucin (ERU; 1-isothiocyanato-4-(methylthio)-butane), an isothiocyanate particularly abundant in arugula (Eruca sativa Mill., Eruca vesicaria L., etc.), derives from the hydrolysis of the glucosinolate glucoerucin by the enzyme myrosinase. Many other natural isothiocyanates influence cancer cells and, in particular, induce antiproliferative effects at relatively high concentrations. Similar antiproliferative effects have also been shown by the newly emerging gasotransmitter hydrogen sulfide (H2 S) and by H2 S-releasing compounds. In a previous study, our group demonstrated that isothiocyanates release H2 S in biological environments. In this work, we demonstrated the H2 S-donor properties of ERU in pancreatic adenocarcinoma cells (AsPC-1) and delineated its profile as a chemopreventive or anticancer agent. Indeed, ERU showed significant antiproliferative effects: ERU inhibited AsPC-1 cell viability at relatively high concentrations (30-100 µM). Moreover, ERU inhibited cell migration, altered the AsPC-1 cell cycle, and exhibited proapoptotic effects. Finally, ERU inhibited ERK1/2 phosphorylation. This mechanism is particularly important in AsPC-1 cells because they are characterized by a mutation in KRAS that determines KRAS hyperactivation followed by MAP-kinase hyperphosphorylation, which plays a pivotal role in pancreatic cancer proliferation, growth, and survival.


Asunto(s)
Adenocarcinoma/tratamiento farmacológico , Antineoplásicos/farmacología , Neoplasias Pancreáticas/tratamiento farmacológico , Sulfuros/farmacología , Tiocianatos/farmacología , Adenocarcinoma/patología , Línea Celular Tumoral , Humanos , Isotiocianatos/farmacología , Neoplasias Pancreáticas/patología , Proteínas Proto-Oncogénicas p21(ras)/genética
16.
Nitric Oxide ; 75: 53-59, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29452248

RESUMEN

Hydrogen sulfide (H2S) is produced by the action of cystathionine-ß-synthase (CBS), cystathionine-γ-lyase (CSE) or 3-mercaptopyruvate sulfurtransferase (3-MST). 3-MST converts 3-mercaptopyruvate (MPT) to H2S and pyruvate. H2S is recognized as an endogenous gaseous mediator with multiple regulatory roles in mammalian cells and organisms. In the present study we demonstrate that MPT, the endogenous substrate of 3-MST, acts also as endogenous H2S donor. Colorimetric, amperometric and fluorescence based assays demonstrated that MPT releases H2S in vitro in an enzyme-independent manner. A functional study was performed on aortic rings harvested from C57BL/6 (WT) or 3-MST-knockout (3-MST-/-) mice with and without endothelium. MPT relaxed mouse aortic rings in endothelium-independent manner and at the same extent in both WT and 3-MST-/- mice. N5-(1-Iminoethyl)-l-ornithine dihydrochloride (L-NIO, an inhibitor of endothelial nitric oxide synthase) as well as 1H-[1,2,4]oxadiazolo [4,3-a]quinoxalin-1-one (ODQ, a soluble guanylyl cyclase inhibitor) did not affect MPT relaxant action. Conversely, hemoglobin (as H2S scavenger), as well as glybenclamide (an ATP-dependent potassium channel blocker) markedly reduced MPT-induced relaxation. The functional data clearly confirmed a non enzymatic vascular effect of MPT. In conclusion, MPT acts also as an endogenous H2S donor and not only as 3-MST substrate. MPT could, thus, be further investigated as a means to increase H2S in conditions where H2S bioavailability is reduced such as hypertension, coronary artery disease, diabetes or urogenital tract disease.


Asunto(s)
Aorta/metabolismo , Cisteína/análogos & derivados , Sulfurtransferasas/metabolismo , Vasodilatadores/metabolismo , Animales , Aorta/efectos de los fármacos , Aorta/fisiología , Cisteína/metabolismo , Cisteína/farmacología , Inhibidores Enzimáticos/farmacología , Sulfuro de Hidrógeno/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Mutantes , Ornitina/análogos & derivados , Ornitina/farmacología , Sulfurtransferasas/genética , Vasodilatadores/farmacología
17.
Phytother Res ; 32(11): 2226-2234, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30069944

RESUMEN

The beneficial effects of isothiocyanate-based compounds, as well as their safety, have been shown in neuropathological disorders, such as neuropathic pain. Aim of the present work was to study the efficacy of the glucosinolate glucoraphanin (GRA) and the derived isothiocyanate sulforaphane (SFN), secondary metabolites occurring exclusively in Brassicales, on chemotherapy-induced neuropathic pain. Mice were repeatedly treated with oxaliplatin (2.4 mg kg-1 ip) for 14 days to induce neuropathic pain. GRA and SFN effects were evaluated after a single administration on Day 15 or after a daily repeated oral and subcutaneous treatment starting from the first day of oxaliplatin injection until the 14th day. Single subcutaneous and oral administrations of GRA (4.43-119.79 µmol kg-1 ) or SFN (1.33-13.31 µmol kg-1 ) reduced neuropathic pain in a dose-dependent manner. The repeated administration of GRA and SFN (respectively 13.31 and 4.43 µmol kg-1 ) prevented the chemotherapy-induced neuropathy. The co-administration of GRA and SFN in mixture with the H2 S binding molecule, haemoglobin, abolished their pain-relieving effect, which was also reverted by pretreating the animals with the selective blocker of Kv7 potassium channels, XE991. GRA and SFN reduce neuropathic pain by releasing H2 S and modulating Kv7 channels and show a protective effect on the chemotherapy-induced neuropathy.


Asunto(s)
Glucosinolatos/farmacología , Sulfuro de Hidrógeno/metabolismo , Imidoésteres/farmacología , Isotiocianatos/farmacología , Canal de Potasio KCNQ1/antagonistas & inhibidores , Neuralgia/tratamiento farmacológico , Compuestos Organoplatinos/efectos adversos , Animales , Antineoplásicos/efectos adversos , Masculino , Ratones , Neuralgia/inducido químicamente , Oxaliplatino , Oximas , Sulfóxidos
18.
Int J Mol Sci ; 19(9)2018 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-30213039

RESUMEN

The present study aimed to demonstrate that Sideral® RM (SRM, Sucrosomial® Raw Material Iron) is transported across the excised intestine via a biological mechanism, and to investigate the effect that this transport route may produce on oral iron absorption, which is expected to reduce the gastrointestinal (GI) side effects caused by the bioavailability of non-absorbed iron. Excised rat intestine was exposed to fluorescein isothiocyanate (FITC)-labeled SRM in Ussing chambers followed by confocal laser scanning microscopy to look for the presence of fluorescein-tagged vesicles of the FITC-labeled SRM. To identify FITC-labeled SRM internalizing cells, an immunofluorescence analysis for macrophages and M cells was performed using specific antibodies. Microscopy analysis revealed the presence of fluorescein positive particulate structures in tissues treated with FITC-labeled SRM. These structures do not disintegrate during transit, and concentrate in macrophage cells. Iron bioavailability was assessed by determining the time-course of Fe3+ plasma levels. As references, iron contents in liver, spleen, and bone marrow were determined in healthy rats treated by gavage with SRM or ferric pyrophosphate salt (FP). SRM significantly increased both area under the curve (AUC) and clearance maxima (Cmax) compared to FP, thus increasing iron bioavailability (AUCrel = 1.8). This led to increased iron availability in the bone marrow at 5 h after single dose gavage.


Asunto(s)
Hierro/metabolismo , Lecitinas/metabolismo , Animales , Difosfatos/metabolismo , Absorción Intestinal , Macrófagos/metabolismo , Masculino , Microscopía Confocal , Ratas , Ratas Wistar
19.
Int J Mol Sci ; 18(10)2017 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-28954424

RESUMEN

Mitochondria play a crucial role in the cell fate; in particular, reducing the accumulation of calcium in the mitochondrial matrix offers cardioprotection. This affect is achieved by a mild depolarization of the mitochondrial membrane potential, which prevents the assembly and opening of the mitochondrial permeability transition pore. For this reason, mitochondria are an attractive target for pharmacological interventions that prevent ischaemia/reperfusion injury. Isosteviol is a diterpenoid created from the acid hydrolysis of Steviarebaudiana Bertoni (fam. Asteraceae) glycosides that has shown protective effects against ischaemia/reperfusion injury, which are likely mediated through the activation of mitochondrial adenosine tri-phosphate (ATP)-sensitive potassium (mitoKATP) channels. Some triphenylphosphonium (triPP)-conjugated derivatives of isosteviol have been developed, and to evaluate the possible pharmacological benefits that result from these synthetic modifications, in this study, the mitochondriotropic properties of isosteviol and several triPP-conjugates were investigated in rat cardiac mitochondria and in the rat heart cell line H9c2. This study's main findings highlight the ability of isosteviol to depolarize the mitochondrial membrane potential and reduce calcium uptake by the mitochondria, which are typical functions of mitochondrial potassium channel openings. Moreover, triPP-conjugated derivatives showed a similar behavior to isosteviol but at lower concentrations, indicative of their improved uptake into the mitochondrial matrix. Finally, the cardioprotective property of a selected triPP-conjugated derivative was demonstrated in an in vivo model of acute myocardial infarct.


Asunto(s)
Diterpenos de Tipo Kaurano/farmacología , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Compuestos Organofosforados , Sustancias Protectoras/farmacología , Animales , Modelos Animales de Enfermedad , Diterpenos de Tipo Kaurano/química , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Compuestos Organofosforados/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Sustancias Protectoras/química , Ratas
20.
Pharmacol Res ; 113(Pt A): 290-299, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27616550

RESUMEN

The endogenous gasotransmitter hydrogen sulphide (H2S) is an important regulator of the cardiovascular system, particularly of myocardial function. Moreover, H2S exhibits cardioprotective activity against ischemia/reperfusion (I/R) or hypoxic injury, and is considered an important mediator of "ischemic preconditioning", through activation of mitochondrial potassium channels, reduction of oxidative stress, activation of the endogenous "anti-oxidant machinery" and limitation of inflammatory responses. Accordingly, H2S-donors, i.e. pro-drugs able to generate exogenous H2S, are viewed as promising therapeutic agents for a number of cardiovascular diseases. The novel H2S-donor 4-carboxy phenyl-isothiocyanate (4CPI), whose vasorelaxing effects were recently reported, was tested here in different experimental models of myocardial I/R. In Langendorff-perfused rat hearts subjected to I/R, 4CPI significantly improved the post-ischemic recovery of myocardial functional parameters and limited tissue injury. These effects were antagonized by 5-hydroxydecanoic acid (a blocker of mitoKATP channels). Moreover, 4CPI inhibited the formation of reactive oxygen species. We found the whole battery of H2S-producing enzymes to be present in myocardial tissue: cystathionine γ-lyase (CSE), cystathionine ß-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (MPST). Notably, 4CPI down-regulated the post-ischemic expression of CSE. In Langendorff-perfused mouse hearts, 4CPI reduced the post-ischemic release of norepinephrine and the incidence of ventricular arrhythmias. In both rat and mouse hearts, 4CPI did not affect the degranulation of resident mast cells. In isolated rat cardiac mitochondria, 4CPI partially depolarized the mitochondrial membrane potential; this effect was antagonized by ATP (i.e., the physiological inhibitor of KATP channels). Moreover, 4CPI abrogated calcium uptake in the mitochondrial matrix. Finally, in an in vivo model of acute myocardial infarction in rats, 4CPI significantly decreased I/R-induced tissue injury. In conclusion, H2S-donors, and in particular isothiocyanate-based H2S-releasing drugs like 4CPI, can actually be considered a suitable pharmacological option in anti-ischemic therapy.


Asunto(s)
Cardiotónicos/farmacología , Sulfuro de Hidrógeno/metabolismo , Isotiocianatos/farmacología , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Canales de Potasio/metabolismo , Animales , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/metabolismo , Cistationina betasintasa/metabolismo , Cistationina betasintasa/farmacología , Cistationina gamma-Liasa/metabolismo , Cisteína/análogos & derivados , Cisteína/farmacología , Ácidos Decanoicos/farmacología , Corazón/efectos de los fármacos , Hidroxiácidos/farmacología , Masculino , Mastocitos/efectos de los fármacos , Mastocitos/metabolismo , Ratones , Ratones Endogámicos C57BL , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/metabolismo , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/metabolismo , Isquemia Miocárdica/tratamiento farmacológico , Isquemia Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA