Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Genes Dev ; 38(3-4): 151-167, 2024 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-38453480

RESUMEN

By satisfying bioenergetic demands, generating biomass, and providing metabolites serving as cofactors for chromatin modifiers, metabolism regulates adult stem cell biology. Here, we report that a branch of glycolysis, the serine biosynthesis pathway (SBP), is activated in regenerating muscle stem cells (MuSCs). Gene inactivation and metabolomics revealed that Psat1, one of the three SBP enzymes, controls MuSC activation and expansion of myogenic progenitors through production of the metabolite α-ketoglutarate (α-KG) and α-KG-generated glutamine. Psat1 ablation resulted in defective expansion of MuSCs and impaired regeneration. Psat1, α-KG, and glutamine were reduced in MuSCs of old mice. α-KG or glutamine re-established appropriate muscle regeneration of adult conditional Psat1 -/- mice and of old mice. These findings contribute insights into the metabolic role of Psat1 during muscle regeneration and suggest α-KG and glutamine as potential therapeutic interventions to ameliorate muscle regeneration during aging.


Asunto(s)
Células Madre Adultas , Ácidos Cetoglutáricos , Ratones , Animales , Ácidos Cetoglutáricos/metabolismo , Glutamina/metabolismo , Envejecimiento/fisiología , Músculos , Músculo Esquelético
2.
Dev Cell ; 58(12): 1052-1070.e10, 2023 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-37105173

RESUMEN

Organismal homeostasis and regeneration are predicated on committed stem cells that can reside for long periods in a mitotically dormant but reversible cell-cycle arrest state defined as quiescence. Premature escape from quiescence is detrimental, as it results in stem cell depletion, with consequent defective tissue homeostasis and regeneration. Here, we report that Polycomb Ezh1 confers quiescence to murine muscle stem cells (MuSCs) through a non-canonical function. In the absence of Ezh1, MuSCs spontaneously exit quiescence. Following repeated injuries, the MuSC pool is progressively depleted, resulting in failure to sustain proper muscle regeneration. Rather than regulating repressive histone H3K27 methylation, Ezh1 maintains gene expression of the Notch signaling pathway in MuSCs. Selective genetic reconstitution of the Notch signaling corrects stem cell number and re-establishes quiescence of Ezh1-/- MuSCs.


Asunto(s)
Transducción de Señal , Células Madre , Ratones , Animales , División Celular , Puntos de Control del Ciclo Celular , Músculos
3.
Cell Rep ; 40(7): 111219, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35977485

RESUMEN

Embryonic stem cells (ESCs) can adopt lineage-specific gene-expression programs by stepwise exposure to defined factors, resulting in the generation of functional cell types. Bulk and single-cell-based assays were employed to catalog gene expression, histone modifications, chromatin conformation, and accessibility transitions in ESC populations and individual cells acquiring a presomitic mesoderm fate and undergoing further specification toward myogenic and neurogenic lineages. These assays identified cis-regulatory regions and transcription factors presiding over gene-expression programs occurring at defined ESC transitions and revealed the presence of heterogeneous cell populations within discrete ESC developmental stages. The datasets were employed to identify previously unappreciated genomic elements directing the initial activation of Pax7 and myogenic and neurogenic gene-expression programs. This study provides a resource for the discovery of genomic and transcriptional features of pluripotent, mesoderm-induced ESCs and ESC-derived cell lineages.


Asunto(s)
Células Madre Embrionarias , Transcriptoma , Diferenciación Celular/genética , Células Madre Embrionarias/metabolismo , Regulación del Desarrollo de la Expresión Génica , Mesodermo/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos
4.
Aging (Albany NY) ; 10(11): 3558-3573, 2018 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-30487319

RESUMEN

p53, with its family members p63 and p73, have been shown to promote myoblast differentiation by regulation of the function of the retinoblastoma protein and by direct activation of p21Cip/Waf1 and p57Kip2, promoting cell cycle exit. In previous studies, we have demonstrated that the TAp63γ isoform is the only member of the p53 family that accumulates during in vitro myoblasts differentiation, and that its silencing led to delay in myotube fusion. To better dissect the role of TAp63γ in myoblast physiology, we have generated both sh-p63 and Tet-On inducible TAp63γ clones. Gene array analysis of sh-p63 C2C7 clones showed a significant modulation of genes involved in proliferation and cellular metabolism. Indeed, we found that sh-p63 C2C7 myoblasts present a higher proliferation rate and that, conversely, TAp63γ ectopic expression decreases myoblasts proliferation, indicating that TAp63γ specifically contributes to myoblasts proliferation, independently of p53 and p73. In addition, sh-p63 cells have a defect in mitochondria respiration highlighted by a reduction in spare respiratory capacity and a decrease in complex I, IV protein levels. These results demonstrated that, beside contributing to cell cycle exit, TAp63γ participates to myoblasts metabolism control.


Asunto(s)
Mitocondrias/metabolismo , Mioblastos/metabolismo , Consumo de Oxígeno , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Línea Celular , Proliferación Celular , Variaciones en el Número de Copia de ADN , ADN Mitocondrial , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Subunidades de Proteína , Factores de Transcripción/genética , Proteínas Supresoras de Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA