Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Food Microbiol ; 103: 103947, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35082064

RESUMEN

After alcoholic fermentation, most wines undergo malolactic fermentation (MLF), driven by the lactic acid bacterium Oenococcus oeni, which improves their organoleptic properties and microbiological stability. Prophages were recently shown to be notably diverse and widely disseminated in O. oeni genomes. Such in silico predictions confirmed previous cultivation-based approaches which showed frequent lysis of strains upon treatment with the inducing agent mitomycin C. Both strategies used to assess lysogeny in the species were so far applied to a number of strains collected from distinct countries, wineries, cepages and fermentation processes. Results may not therefore be representative of the lysogenic population in natural communities driving the MLF during winemaking. Here we report the prevalence of lysogeny during winemaking in three wineries in the Bordeaux area. The dominant LAB population was collected in 11 red wines upon completion of MLF. Using VNTR and prophage typing analyses, our data confirm the presence of lysogens in the population driving the spontaneous MLF in all tested wines, although lysogeny rates varied across wineries. Higher prevalence of lysogeny was associated to a reduced diversity in VNTR profiles, the dominance of a few prophage-types and presence of some bacterial genetic backgrounds that were particularly prone to lysogenization.


Asunto(s)
Oenococcus , Vino , Fermentación , Ácido Láctico , Lisogenia , Malatos , Oenococcus/genética , Profagos/genética , Vino/análisis
2.
Appl Environ Microbiol ; 85(19)2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31375489

RESUMEN

Oenococcus oeni is the lactic acid bacterium (LAB) that most commonly drives malolactic fermentation in wine. Although oenococcal prophages are highly prevalent, their implications on bacterial fitness have remained unexplored and more research is required in this field. An important step toward achieving this goal is the ability to produce isogenic pairs of strains that differ only by the lysogenic presence of a given prophage, allowing further comparisons of different phenotypic traits. A novel protocol for the rapid isolation of lysogens is presented. Bacteria were first picked from the center of turbid plaques produced by temperate oenophages on a sensitive nonlysogenic host. When streaked onto an agar medium containing red grape juice (RGJ), cells segregated into white and red colonies. PCR amplifications with phage-specific primers demonstrated that only lysogens underwent white-red morphotypic switching. The method proved successful for various oenophages irrespective of their genomic content and attachment site used for site-specific recombination in the bacterial chromosome. The color switch was also observed when a sensitive nonlysogenic strain was infected with an exogenously provided lytic phage, suggesting that intracolonial lysis triggers the change. Last, lysogens also produced red colonies on white grape juice agar supplemented with polyphenolic compounds. We posit that spontaneous prophage excision produces cell lysis events in lysogenic colonies growing on RGJ agar, which, in turn, foster interactions between lysed materials and polyphenolic compounds to yield colonies easily distinguishable by their red color. Furthermore, the technique was used successfully with other species of LAB.IMPORTANCE The presence of white and red colonies on red grape juice (RGJ) agar during enumeration of Oenococcus oeni in wine samples is frequently observed by stakeholders in the wine industry. Our study brings an explanation for this intriguing phenomenon and establishes a link between the white-red color switch and the lysogenic state of O. oeni It also provides a simple and inexpensive method to distinguish between lysogenic and nonlysogenic derivatives in O. oeni with a minimum of expended time and effort. Noteworthy, the protocol could be adapted to two other species of LAB, namely, Leuconostoc citreum and Lactobacillus plantarum It could be an effective tool to provide genetic, ecological, and functional insights into lysogeny and aid in improving biotechnological processes involving members of the lactic acid bacterium (LAB) family.


Asunto(s)
Agar/química , Medios de Cultivo/química , Jugos de Frutas y Vegetales , Lisogenia , Oenococcus/fisiología , Vitis , Recuento de Colonia Microbiana , Oenococcus/genética , Fenotipo , Filogenia , Profagos , Vino/microbiología
3.
Appl Environ Microbiol ; 83(3)2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-27864168

RESUMEN

Understanding the mechanisms behind the typicity of regional wines inevitably brings attention to microorganisms associated with their production. Oenococcus oeni is the main bacterial species involved in wine and cider making. It develops after the yeast-driven alcoholic fermentation and performs the malolactic fermentation, which improves the taste and aromatic complexity of most wines. Here, we have evaluated the diversity and specificity of O. oeni strains in six regions. A total of 235 wines and ciders were collected during spontaneous malolactic fermentations and used to isolate 3,212 bacterial colonies. They were typed by multilocus variable analysis, which disclosed a total of 514 O. oeni strains. Their phylogenetic relationships were evaluated by a second typing method based on single nucleotide polymorphism (SNP) analysis. Taken together, the results indicate that each region holds a high diversity of strains that constitute a unique population. However, strains present in each region belong to diverse phylogenetic groups, and the same groups can be detected in different regions, indicating that strains are not genetically adapted to regions. In contrast, greater strain identity was seen for cider, white wine, or red wine of Burgundy, suggesting that genetic adaptation to these products occurred. IMPORTANCE: This study reports the isolation, genotyping, and geographic distribution analysis of the largest collection of O. oeni strains performed to date. It reveals that there is very high diversity of strains in each region, the majority of them being detected in a single region. The study also reports the development of an SNP genotyping method that is useful for analyzing the distribution of O. oeni phylogroups. The results show that strains are not genetically adapted to regions but to specific types of wines. They reveal new phylogroups of strains, particularly two phylogroups associated with white wines and red wines of Burgundy. Taken together, the results shed light on the diversity and specificity of wild strains of O. oeni, which is crucial for understanding their real contribution to the unique properties of wines.


Asunto(s)
Genotipo , Oenococcus/genética , Polimorfismo de Nucleótido Simple , Vino/microbiología , Oenococcus/clasificación , Filogenia , Análisis de Secuencia de ADN
4.
BMC Plant Biol ; 16(1): 144, 2016 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-27350040

RESUMEN

BACKGROUND: The acid component of grape berries, originating in the metabolism of malate and tartrate, the latter being less well-known than the former, is a key factor at play in the microbiological stability of wines destined for distillation. Grape acidity is increasingly affected by climate changes. The ability to compare two vintages with contrasted climatic conditions may contribute to a global understanding of the regulation of acid metabolism and the future consequences for berry composition. RESULTS: The results of the analyses (molecular, protein, enzymatic) of tartrate biosynthesis pathways were compared with the developmental accumulation of tartrate in Ugni blanc grape berries, from floral bud to maturity. The existence of two distinct steps during this pathway was confirmed: one prior to ascorbate, with phases of VvGME, VvVTC2, VvVTC4, VvL-GalDH, VvGLDH gene expression and abundant protein, different for each vintage; the other downstream of ascorbate, leading to the synthesis of tartrate with maximum VvL-IdnDH genetic and protein expression towards the beginning of the growth process, and in correlation with enzyme activity regardless of the vintage. CONCLUSIONS: Overall results suggest that the two steps of this pathway do not appear to be regulated in the same way and could both be activated very early on during berry development.


Asunto(s)
Clima , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Tartratos/metabolismo , Vitis/genética , Frutas/química , Frutas/genética , Frutas/metabolismo , Proteínas de Plantas/metabolismo , Vitis/metabolismo
5.
Appl Environ Microbiol ; 82(10): 2909-2918, 2016 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-26969698

RESUMEN

UNLABELLED: Three wine estates (designated A, B, and C) were sampled in Sauternes, a typical appellation of the Bordeaux wine area producing sweet white wine. From those wine estates, 551 yeast strains were collected between 2012 and 2014, added to 102 older strains from 1992 to 2011 from wine estate C. All the strains were analyzed through 15 microsatellite markers, resulting in 503 unique Saccharomyces cerevisiae genotypes, revealing high genetic diversity and a low presence of commercial yeast starters. Population analysis performed using Fst genetic distance or ancestry profiles revealed that the two closest wine estates, B and C, which have juxtaposed vineyard plots and common seasonal staff, share more related isolates with each other than with wine estate A, indicating exchange between estates. The characterization of isolates collected 23 years ago at wine estate C in relation to recent isolates obtained at wine estate B revealed the long-term persistence of isolates. Last, during the 2014 harvest period, a temporal succession of ancestral subpopulations related to the different batches associated with the selective picking of noble rotted grapes was highlighted. IMPORTANCE: High genetic diversity of S. cerevisiae isolates from spontaneous fermentation on wine estates in the Sauternes appellation of Bordeaux was revealed. Only 7% of all Sauternes strains were considered genetically related to specific commercial strains. The long-term persistence (over 20 years) of S. cerevisiae profiles on a given wine estate is highlighted.


Asunto(s)
Biota , Microbiología Ambiental , Variación Genética , Saccharomyces cerevisiae/clasificación , Saccharomyces cerevisiae/aislamiento & purificación , ADN de Hongos/genética , Genotipo , Repeticiones de Microsatélite , Tipificación Molecular , Técnicas de Tipificación Micológica , Saccharomyces cerevisiae/genética , Factores de Tiempo , Vino
6.
Food Microbiol ; 53(Pt A): 10-7, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26611165

RESUMEN

Oenococcus oeni (O. oeni), which is the main species that drives malolactic fermentation (FML), an essential step for wine microbial stabilization and quality improvement, is known to produce exopolysaccharides (EPS). Depending on the strain, these EPS can be soluble, remain attached to the cell or both. In the present study, fourteen strains were examined for eps gene content and EPS production capacities. Cell-linked and soluble heteropolysaccharides made of glucose, galactose and rhamnose, soluble ß-glucan, and soluble dextran or levan were found, depending on the strain. The protective potential of either cell-linked heteropolysaccharides or dextrans produced was then studied during freeze drying of the bacterial strains.


Asunto(s)
Oenococcus/química , Oenococcus/metabolismo , Polisacáridos Bacterianos/química , Polisacáridos Bacterianos/genética , Cápsulas Bacterianas/química , Cápsulas Bacterianas/ultraestructura , Fermentación/fisiología , Liofilización , Genómica , Microscopía Electrónica de Transmisión , Fenotipo , Polisacáridos Bacterianos/biosíntesis , Polisacáridos Bacterianos/aislamiento & purificación , Vino/microbiología
7.
Food Microbiol ; 52: 131-7, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26338126

RESUMEN

Lot of articles report on the impact of polyphenols on wine lactic acid bacteria, but it is clear that the results still remain confusing, because the system is complicated both in term of chemical composition and of diversity of strains. In addition, red wines polyphenols are multiple, complex and reactive molecules. Moreover, the final composition of wine varies according to grape variety and to extraction during winemaking. Therefore it is nearly impossible to deduce their effects on bacteria from experiments in oversimplified conditions. In the present work, effect of tannins preparations, currently considered as possible technological adjuvants, was assessed on growth and malolactic fermentation for two malolactic starters. Experiments were conducted in a laboratory medium and in a white wine. Likewise, impact of total polyphenolic extracts obtained from different grape variety red wines was evaluated in the white wine as culture medium. As expected growth and activity of both strains were affected whatever the additions. Results suggest some interpretations to the observed impacts on bacterial populations. Influence of tannins should be, at least partly, due to redox potential change. Results on wine extracts show the need for investigating the bacterial metabolism of some galloylated molecules. Indeed, they should play on bacterial physiology and probably affect the sensory qualities of wines.


Asunto(s)
Oenococcus/metabolismo , Fenoles/metabolismo , Taninos/metabolismo , Vitis/microbiología , Vino/microbiología , Fermentación , Vino/análisis
8.
J Ind Microbiol Biotechnol ; 41(5): 811-21, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24659178

RESUMEN

We compared pyrosequencing technology with the PCR-ITS-RFLP analysis of yeast isolates and denaturing gradient gel electrophoresis (DGGE). These methods gave divergent findings for the yeast population. DGGE was unsuitable for the quantification of biodiversity and its use for species detection was limited by the initial abundance of each species. The isolates identified by PCR-ITSRFLP were not fully representative of the true population. For population dynamics, high-throughput sequencing technology yielded results differing in some respects from those obtained with other approaches. This study demonstrates that 454 pyrosequencing of amplicons is more relevant than other methods for studying the yeast community on grapes and during alcoholic fermentation. Indeed, this high-throughput sequencing method detected larger numbers of species on grapes and identified species present during alcoholic fermentation that were undetectable with the other techniques.


Asunto(s)
Biodiversidad , Fermentación , Secuenciación de Nucleótidos de Alto Rendimiento , Levaduras/clasificación , Electroforesis en Gel de Gradiente Desnaturalizante , Etanol/metabolismo , Reacción en Cadena de la Polimerasa , Vitis/microbiología , Levaduras/genética
9.
Food Microbiol ; 38: 80-6, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24290630

RESUMEN

Oenococcus oeni is responsible for the malolactic fermentation of wine. Genomic diversity has already been established in this species. In addition, winemakers usually report varying starter-culture efficiency. It is essential to monitor indigenous and selected strains in order to understand strain survival and development during the winemaking process. A previous article described a variable number of tandem repeats (VNTR) scheme, based on five polymorphic loci of the genome. VNTR typing of O. oeni was highly discriminating, faster, and more reliable than the PFGE or MLST methods. The objective of this study was to set up a faster protocol by multiplexing, taking advantage of the high performance of multicolor capillary electrophoresis. The primers were labeled with multiple fluorescent dyes. PCR conditions were adapted by multiplexing amplifications in two separate PCR mixtures for the five loci, both at the same annealing temperature. The resulting assay proved to be robust, accurate, fast and easy to perform. Thanks to this new protocol, all O. oeni strains used in the study were typed using the five tandem repeats (TR). As expected, the primers for the five TR loci were specific to O. oeni. The method was improved to analyze isolated and mixed colonies, as well as bacteria harvested from wine using fast technology for analysis of nucleic acids (FTA(®)) technology. Finally, predictive models were constructed, to predict phylogenetic relationships and associate bacterial strain resistance to freeze-drying with fragment length analysis (FLA) profiles and genotypic and phenotypic characters.


Asunto(s)
Repeticiones de Minisatélite , Tipificación de Secuencias Multilocus/métodos , Oenococcus/aislamiento & purificación , Reacción en Cadena de la Polimerasa/métodos , Cartilla de ADN/genética , ADN Bacteriano/genética , Datos de Secuencia Molecular , Oenococcus/clasificación , Oenococcus/genética , Filogenia , Vino/microbiología
10.
Food Microbiol ; 36(2): 267-74, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24010607

RESUMEN

Molecular techniques have been applied to study the evolution of wine-associated lactic acid bacteria from red wines produced in the absence and presence of antimicrobial phenolic extracts, eucalyptus leaves and almond skins, and to genetically characterize representative Oenococcus oeni strains. Monitoring microbial populations by PCR-DGGE targeting the rpoB gene revealed that O. oeni was, as expected, the species responsible for malolactic fermentation (MLF). Representative strains from both extract-treated and not-treated wines were isolated and all were identified as O. oeni species, by 16S rRNA sequencing. Typing of isolated O. oeni strains based on the mutation of the rpoB gene suggested a more favorable adaptation of L strains (n = 63) than H strains (n = 3) to MLF. Moreover, PFGE analysis of the isolated O. oeni strains revealed 27 different genetic profiles, which indicates a rich biodiversity of indigenous O. oeni species in the winery. Finally, a higher number of genetic markers were shown in the genome of strains from control wines than strains from wines elaborated with phenolic extracts. These results provide a basis for further investigation of the molecular and evolutionary mechanisms leading to the prevalence of O. oeni in wines treated with polyphenols as inhibitor compounds.


Asunto(s)
Antibacterianos/farmacología , Eucalyptus/química , Variación Genética , Oenococcus/efectos de los fármacos , Oenococcus/genética , Fenoles/farmacología , Extractos Vegetales/farmacología , Prunus/química , Vino/microbiología , Proteínas Bacterianas/genética , Variación Genética/efectos de los fármacos , Oenococcus/aislamiento & purificación , Vino/análisis
11.
Microbiol Resour Announc ; 12(4): e0107222, 2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-36988513

RESUMEN

Here, we announce the draft genome sequence of an Oenococcus kitaharae strain isolated from homemade water kefir in Bordeaux, France. O. kitaharae CRBO2176 is deposited at the Biological Resources Center Oenology (CRBO) of the Institute of Vine and Wine Science (ISVV; Villenave d'Ornon, France).

12.
Food Microbiol ; 30(2): 340-7, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22365346

RESUMEN

Oenococcus oeni is responsible for the malolactic fermentation of wine. Genomic diversity has already been established in this species. In addition, winemakers usually report varying starter culture efficiency. The monitoring of indigenous and selected strains is essential for understanding strain survival and implantation during the winemaking process. In this study, we report the development of the first typing scheme for O. oeni using multiple-locus variable number of tandem repeat analysis (VNTR). The discriminatory power of 14 out of 44 tandem repeat loci in the genome of the PSU-1 strain was initially evaluated with a test collection of 18 genotypically distinct starter strains. Then five VNTR loci, which can be easily scored with the technology used here, were identified and used to genotype a collection of 236 strains, previously classified by restriction endonuclease analysis-pulsed-field gel electrophoresis (REA-PFGE) and multilocus sequence typing (MLST) into 136 REA-PFGE types or 110 MLST types. The discriminatory power of VNTR (as determined by Simpson's index of discrimination) was higher than that of the other two methods, with 201 VNTR types. The targeted VNTR markers were found to be stable and did not change for the clones of the same strain deposited in a collection at intervals of several years. Strains isolated from the different wine producing areas or the products were assigned to phylogenetic groups and were statistically linked with the VNTR profiles. Another interesting observation was that the loci were found in sequences homologous to regions encoding for membrane-anchored proteins.


Asunto(s)
Técnicas de Tipificación Bacteriana/métodos , Repeticiones de Minisatélite , Oenococcus/genética , Secuencia de Aminoácidos , Electroforesis en Gel de Campo Pulsado , Genotipo , Datos de Secuencia Molecular , Oenococcus/clasificación
13.
Int J Food Microbiol ; 383: 109936, 2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36179497

RESUMEN

Winemaking is a complex process in which numerous microorganisms, mainly yeasts and lactic acid bacteria (LAB), play important roles. After alcoholic fermentation (AF), most wines undergo malolactic fermentation (MLF) to improve their organoleptic properties and microbiological stability. Oenococcus oeni is mainly responsible for this crucial process where L-malic acid (MA) in wine converts to softer L-lactic acid. The bacterium is better adapted to the limiting conditions imposed by the wine matrix and performs MLF under regular winemaking conditions, especially in wines with a pH below 3.5. Traditionally, this process has been conducted by the natural microbiota present within the winery. However, the start, duration and qualitative impact of spontaneous MLF are unpredictable, which prompts winemakers to use pure starter cultures of selected bacteria to promote a more reliable, simple, fast and efficient fermentation. Yet, their use does not always ensure a problem-free fermentation. Spontaneous initiation of the process may prove very difficult or does not occur at all. Such difficulties arise from a combination of factors found in some wines upon the completion of AF (high ethanol concentration, low temperature and pH, low nutrient concentrations, presence of free and bound SO2). Alongside these well documented facts, research has also provided evidence that negative interactions between O. oeni and other biological entities such as yeasts may also impact MLF. Another insufficiently described, but highly significant factor inhibiting bacterial growth is connected to the presence of bacteriophages of O. oeni which are frequently associated to musts and wines. The purpose of this review is to summarize the current knowledge about the phage life cycles and possible impacts on the trajectory of the microbiota during winemaking.


Asunto(s)
Bacteriófagos , Vino , Vino/microbiología , Fermentación , Bacteriófagos/metabolismo , Levaduras/metabolismo , Ácido Láctico/metabolismo , Etanol , Dinámica Poblacional
14.
Viruses ; 15(1)2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36680056

RESUMEN

The Oenococcus genus comprises four recognized species, and members have been found in different types of beverages, including wine, kefir, cider and kombucha. In this work, we implemented two complementary strategies to assess whether oenococcal hosts of different species and habitats were connected through their bacteriophages. First, we investigated the diversity of CRISPR-Cas systems using a genome-mining approach, and CRISPR-endowed strains were identified in three species. A census of the spacers from the four identified CRISPR-Cas loci showed that each spacer space was mostly dominated by species-specific sequences. Yet, we characterized a limited records of potentially recent and also ancient infections between O. kitaharae and O. sicerae and phages of O. oeni, suggesting that some related phages have interacted in diverse ways with their Oenococcus hosts over evolutionary time. Second, phage-host interaction analyses were performed experimentally with a diversified panel of phages and strains. None of the tested phages could infect strains across the species barrier. Yet, some infections occurred between phages and hosts from distinct beverages in the O. oeni species.


Asunto(s)
Bacteriófagos , Oenococcus , Vino , Bacteriófagos/genética , Oenococcus/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Ecosistema , Sistemas CRISPR-Cas
15.
Int J Food Microbiol ; 369: 109617, 2022 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-35290839

RESUMEN

Oenococcus oeni is the most resistant lactic acid bacteria species to the environmental stresses encountered in wine, particularly the acidity, presence of ethanol and phenolic compounds. Indigenous strains develop spontaneously following the yeast-driven alcoholic fermentation and may perform the malolactic fermentation whereby improving taste, aroma, and the microbial stability of wine. However, spontaneous fermentation is sometimes delayed, prolonged or incomplete. In order to better control its timing and quality, O. oeni strains are selected and developed to be used as malolactic starters. They are prepared under proprietary manufacturing processes to survive direct inoculation and are predominantly provided as freeze-dried preparations. In this study, we have investigated the physiological and molecular alterations occurring in O. oeni cells prepared by an industrial process that consists of preconditioning protocols and freeze-drying, and compared them to the same strain grown in a grape juice medium. We found that compared to cultured cells, the industrial production process improved survival under extreme conditions, i. e. at low pH or high tannin concentrations. In contrast, cultured cells resumed active growth more quickly and strongly than freeze-dried preparations in standard pH wines. A proteomic analysis showed that during the industrial production most non-essential metabolic processes are shut down and components of the general and the stringent stress response are upregulated. The presence of major components of the stress response facilitates protein homeostasis and physiological changes that further ensure the integrity of cells.


Asunto(s)
Oenococcus , Vino , Fermentación , Malatos/metabolismo , Oenococcus/metabolismo , Proteómica , Vino/microbiología
16.
Microorganisms ; 9(4)2021 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-33923461

RESUMEN

Oenococcus oeni is the most exploited lactic acid bacterium in the wine industry and drives the malolactic fermentation of wines. Although prophage-like sequences have been identified in the species, many are not characterized, and a global view of their integration and distribution amongst strains is currently lacking. In this work, we analyzed the complete genomes of 231 strains for the occurrence of prophages, and analyzed their size and positions of insertion. Our data show the limited variation in the number of prophages in O. oeni genomes, and that six sites of insertion within the bacterial genome are being used for site-specific recombination. Prophage diversity patterns varied significantly for different host lineages, and environmental niches. Overall, the findings highlight the pervasive presence of prophages in the O. oeni species, their role as a major source of within-species bacterial diversity and drivers of horizontal gene transfer. Our data also have implications for enhanced understanding of the prophage recombination events which occurred during evolution of O. oeni, as well as the potential of prophages in influencing the fitness of these bacteria in their distinct niches.

17.
Appl Environ Microbiol ; 76(23): 7754-64, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20935119

RESUMEN

Among the lactic acid bacteria (LAB) present in the oenological microbial ecosystem, Oenococcus oeni, an acidophilic lactic acid bacterium, is essential during winemaking. It outclasses all other bacterial species during malolactic fermentation (MLF). Oenological performances, such as malic acid degradation rate and sensorial impact, vary significantly according to the strain. The genetic diversity of the O. oeni species was evaluated using a multilocus sequence typing (MLST) scheme. Seven housekeeping genes were sequenced for a collection of 258 strains that had been isolated all over the world (particularly Burgundy, Champagne, and Aquitaine, France, Chile, South Africa, and Italy) and in several wine types (red wines, white wines, and champagne) and cider. The allelic diversity was high, with an average of 20.7 alleles per locus, many of them being rare alleles. The collection comprised 127 sequence types, suggesting an important genotypic diversity. The neighbor-joining phylogenetic tree constructed from the concatenated sequence of the seven housekeeping genes showed two major phylogenetic groups, named A and B. One unique strain isolated from cider composed a third group, rooting the phylogenetic tree. However, all other strains isolated from cider were in group B. Eight phylogenetic subgroups were statistically differentiated and could be delineated by the analysis of only 32 mutations instead of the 600 mutations observed in the concatenated sequence of the seven housekeeping genes. Interestingly, in group A, several phylogenetic subgroups were composed mostly of strains coming from a precise geographic origin. Three subgroups were identified, composed of strains from Chile, South Africa, and eastern France.


Asunto(s)
Variación Genética , Oenococcus/clasificación , Oenococcus/genética , Vino/microbiología , Chile , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/genética , Francia , Genotipo , Italia , Datos de Secuencia Molecular , Tipificación de Secuencias Multilocus , Oenococcus/aislamiento & purificación , Filogenia , Homología de Secuencia , Sudáfrica
18.
Sci Rep ; 10(1): 16214, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-33004911

RESUMEN

Saccharomyces cerevisiae is the main actor of wine fermentation but at present, still little is known about the factors impacting its distribution in the vineyards. In this study, 23 vineyards and 7 cellars were sampled over 2 consecutive years in the Bordeaux and Bergerac regions. The impact of geography and farming system and the relation between grape and vat populations were evaluated using a collection of 1374 S. cerevisiae merlot grape isolates and 289 vat isolates analyzed at 17 microsatellites loci. A very high genetic diversity of S. cerevisiae strains was obtained from grape samples, higher in conventional farming system than in organic one. The geographic appellation and the wine estate significantly impact the S. cerevisiae population structure, whereas the type of farming system has a weak global effect. When comparing cellar and vineyard populations, we evidenced the tight connection between the two compartments, based on the high proportion of grape isolates (25%) related to the commercial starters used in the cellar and on the estimation of bidirectional geneflows between the vineyard and the cellar compartments.


Asunto(s)
Biodiversidad , ADN de Hongos/análisis , Actividades Humanas , Saccharomyces cerevisiae/genética , Vitis/microbiología , ADN de Hongos/genética , Granjas , Fermentación , Humanos , Repeticiones de Microsatélite , Saccharomyces cerevisiae/clasificación , Saccharomyces cerevisiae/aislamiento & purificación
19.
Bio Protoc ; 10(21): e3801, 2020 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-33659455

RESUMEN

With the objective to isolate phages infecting wine bacterial spoilers, we designed a method for the isolation and purification of phages infecting grape-associated bacteria. The method proved successful to isolate GC1 tectivirus infecting the acetic acid bacterium Gluconobacter cerinus. The isolated phage represents a new genus within the Tectiviridae, named "Gammatectivirus". Using a traditional technique for the concentration of phage particles involving several steps of centrifugation, further insights in the ultrastructure of GC1 could be observed by cryo electron microscopy, saving time and effort. The simple workflow presented may be applied to other viruses infecting bacteria inhabiting other vegetal niches.

20.
Front Microbiol ; 11: 596541, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33519734

RESUMEN

There has been little exploration of how phages contribute to the diversity of the bacterial community associated with winemaking and may impact fermentations and product quality. Prophages of Oenococcus oeni, the most common species of lactic acid bacteria (LAB) associated with malolactic fermentation of wine, have been described, but no data is available regarding phages of O. oeni with true virulent lifestyles. The current study reports on the incidence and characterization of the first group of virulent oenophages named Vinitor, isolated from the enological environment. Vinitor phages are morphologically very similar to siphoviruses infecting other LAB. Although widespread during winemaking, they are more abundant in musts than temperate oenophages. We obtained the complete genomic sequences of phages Vinitor162 and Vinitor27, isolated from white and red wines, respectively. The assembled genomes shared 97.6% nucleotide identity and belong to the same species. Coupled with phylogenetic analysis, our study revealed that the genomes of Vinitor phages are architecturally mosaics and represent unique combinations of modules amongst LAB infecting-phages. Our data also provide some clues to possible evolutionary connections between Vinitor and (pro)phages associated to epiphytic and insect-related bacteria.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA