Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 461(7262): 385-8, 2009 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-19759618

RESUMEN

On entering an era of global warming, the stability of the Greenland ice sheet (GIS) is an important concern, especially in the light of new evidence of rapidly changing flow and melt conditions at the GIS margins. Studying the response of the GIS to past climatic change may help to advance our understanding of GIS dynamics. The previous interpretation of evidence from stable isotopes (delta(18)O) in water from GIS ice cores was that Holocene climate variability on the GIS differed spatially and that a consistent Holocene climate optimum-the unusually warm period from about 9,000 to 6,000 years ago found in many northern-latitude palaeoclimate records-did not exist. Here we extract both the Greenland Holocene temperature history and the evolution of GIS surface elevation at four GIS locations. We achieve this by comparing delta(18)O from GIS ice cores with delta(18)O from ice cores from small marginal icecaps. Contrary to the earlier interpretation of delta(18)O evidence from ice cores, our new temperature history reveals a pronounced Holocene climatic optimum in Greenland coinciding with maximum thinning near the GIS margins. Our delta(18)O-based results are corroborated by the air content of ice cores, a proxy for surface elevation. State-of-the-art ice sheet models are generally found to be underestimating the extent and changes in GIS elevation and area; our findings may help to improve the ability of models to reproduce the GIS response to Holocene climate.


Asunto(s)
Efecto Invernadero , Cubierta de Hielo , Altitud , Groenlandia , Historia Antigua , Oxígeno/análisis , Isótopos de Oxígeno , Temperatura
2.
Nature ; 431(7005): 147-51, 2004 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-15356621

RESUMEN

Two deep ice cores from central Greenland, drilled in the 1990s, have played a key role in climate reconstructions of the Northern Hemisphere, but the oldest sections of the cores were disturbed in chronology owing to ice folding near the bedrock. Here we present an undisturbed climate record from a North Greenland ice core, which extends back to 123,000 years before the present, within the last interglacial period. The oxygen isotopes in the ice imply that climate was stable during the last interglacial period, with temperatures 5 degrees C warmer than today. We find unexpectedly large temperature differences between our new record from northern Greenland and the undisturbed sections of the cores from central Greenland, suggesting that the extent of ice in the Northern Hemisphere modulated the latitudinal temperature gradients in Greenland. This record shows a slow decline in temperatures that marked the initiation of the last glacial period. Our record reveals a hitherto unrecognized warm period initiated by an abrupt climate warming about 115,000 years ago, before glacial conditions were fully developed. This event does not appear to have an immediate Antarctic counterpart, suggesting that the climate see-saw between the hemispheres (which dominated the last glacial period) was not operating at this time.

3.
Science ; 218(4579): 1273-7, 1982 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-17770148

RESUMEN

The polar ice sheets are rich sources of information on past atmospheric conditions, including paleoclimates. A new deep ice core has been drilled in south Greenland. Comparison of the oxygen isotopic profile with that from camp Century and with a deep-sea foraminifera record indicates that the new core reaches back to about 90,000 years before present in a continuous sequence. The details in the Wisconsin part of the ice core records seem to be climatically, significant, and the general trends reveal all of the relevant Emiliani stages recorded in deep-sea cores. The redated Camp Century record suggests a dramatic termination of the Eem/Sangamon interglacial.

4.
Nature ; 227(5257): 482-3, 1970 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-16058011
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA