Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Cell Sci ; 137(2)2024 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-38180080

RESUMEN

RhoU is an atypical member of the Rho family of small G-proteins, which has N- and C-terminal extensions compared to the classic Rho GTPases RhoA, Rac1 and Cdc42, and associates with membranes through C-terminal palmitoylation rather than prenylation. RhoU mRNA expression is upregulated in prostate cancer and is considered a marker for disease progression. Here, we show that RhoU overexpression in prostate cancer cells increases cell migration and invasion. To identify RhoU targets that contribute to its function, we found that RhoU homodimerizes in cells. We map the region involved in this interaction to the C-terminal extension and show that C-terminal palmitoylation is required for self-association. Expression of the isolated C-terminal extension reduces RhoU-induced activation of p21-activated kinases (PAKs), which are known downstream targets for RhoU, and induces cell morphological changes consistent with inhibiting RhoU function. Our results show for the first time that the activity of a Rho family member is stimulated by self-association, and this is important for its activity.


Asunto(s)
Neoplasias de la Próstata , Proteínas de Unión al GTP rho , Humanos , Masculino , Proteína de Unión al GTP cdc42/genética , Proteína de Unión al GTP cdc42/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Proteínas de Unión al GTP rho/genética , Proteínas de Unión al GTP rho/metabolismo
2.
J Biol Chem ; 298(6): 101916, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35429500

RESUMEN

Activated Cdc42-associated kinase (ACK) is an oncogenic nonreceptor tyrosine kinase associated with poor prognosis in several human cancers. ACK promotes proliferation, in part by contributing to the activation of Akt, the major effector of class 1A phosphoinositide 3-kinases (PI3Ks), which transduce signals via membrane phosphoinositol lipids. We now show that ACK also interacts with other key components of class 1A PI3K signaling, the PI3K regulatory subunits. We demonstrate ACK binds to all five PI3K regulatory subunit isoforms and directly phosphorylates p85α, p85ß, p50α, and p55α on Tyr607 (or analogous residues). We found that phosphorylation of p85ß promotes cell proliferation in HEK293T cells. We demonstrate that ACK interacts with p85α exclusively in nuclear-enriched cell fractions, where p85α phosphorylated at Tyr607 (pTyr607) also resides, and identify an interaction between pTyr607 and the N-terminal SH2 domain that supports dimerization of the regulatory subunits. We infer from this that ACK targets p110-independent p85 and further postulate that these regulatory subunit dimers undertake novel nuclear functions underpinning ACK activity. We conclude that these dimers represent a previously undescribed mode of regulation for the class1A PI3K regulatory subunits and potentially reveal additional avenues for therapeutic intervention.


Asunto(s)
Fosfatidilinositol 3-Quinasas , Proteínas Tirosina Quinasas , Núcleo Celular/enzimología , Células HEK293 , Humanos , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Multimerización de Proteína , Proteínas Tirosina Quinasas/metabolismo , Transducción de Señal
3.
Int J Mol Sci ; 24(7)2023 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-37047202

RESUMEN

The downregulation of Pleckstrin Homology-Like Domain family A member 1 (PHLDA1) expression mediates resistance to targeted therapies in receptor tyrosine kinase-driven cancers. The restoration and maintenance of PHLDA1 levels in cancer cells thus constitutes a potential strategy to circumvent resistance to inhibitors of receptor tyrosine kinases. Through a pharmacological approach, we identify the inhibition of MAPK signalling as a crucial step in PHLDA1 downregulation. Further ChIP-qPCR analysis revealed that MEK1/2 inhibition produces significant epigenetic changes at the PHLDA1 locus, specifically a decrease in the activatory marks H3Kme3 and H3K27ac. In line with this, we show that treatment with the clinically relevant class I histone deacetylase (HDAC) inhibitor 4SC-202 restores PHLDA1 expression in lapatinib-resistant human epidermal growth factor receptor-2 (HER2)+ breast cancer cells. Critically, we show that when given in combination, 4SC-202 and lapatinib exert synergistic effects on 2D cell proliferation and colony formation capacity. We therefore propose that co-treatment with 4SC-202 may prolong the clinical efficacy of lapatinib in HER2+ breast cancer patients.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Humanos , Femenino , Lapatinib/farmacología , Lapatinib/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Histona Desacetilasas , Quinazolinas/farmacología , Resistencia a Antineoplásicos , Receptor ErbB-2/metabolismo , Línea Celular Tumoral , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Factores de Transcripción/metabolismo
4.
J Biol Chem ; 291(35): 18310-25, 2016 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-27334922

RESUMEN

Aberrant Ras signaling drives numerous cancers, and drugs to inhibit this are urgently required. This compelling clinical need combined with recent innovations in drug discovery including the advent of biologic therapeutic agents, has propelled Ras back to the forefront of targeting efforts. Activated Ras has proved extremely difficult to target directly, and the focus has moved to the main downstream Ras-signaling pathways. In particular, the Ras-Raf and Ras-PI3K pathways have provided conspicuous enzyme therapeutic targets that were more accessible to conventional drug-discovery strategies. The Ras-RalGEF-Ral pathway is a more difficult challenge for traditional medicinal development, and there have, therefore, been few inhibitors reported that disrupt this axis. We have used our structure of a Ral-effector complex as a basis for the design and characterization of α-helical-stapled peptides that bind selectively to active, GTP-bound Ral proteins and that compete with downstream effector proteins. The peptides have been thoroughly characterized biophysically. Crucially, the lead peptide enters cells and is biologically active, inhibiting isoform-specific RalB-driven cellular processes. This, therefore, provides a starting point for therapeutic inhibition of the Ras-RalGEF-Ral pathway.


Asunto(s)
Isoenzimas/antagonistas & inhibidores , Péptidos/farmacología , Transducción de Señal/efectos de los fármacos , Proteínas de Unión al GTP ral/antagonistas & inhibidores , Línea Celular , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/enzimología , Neoplasias/genética , Péptidos/genética , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas de Unión al GTP ral/genética , Proteínas de Unión al GTP ral/metabolismo , Proteínas ras/genética , Proteínas ras/metabolismo
5.
Front Immunol ; 13: 1035589, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36713380

RESUMEN

Introduction: Chronic Chagasic cardiomyopathy (CCC), caused by the protozoan Trypanosoma cruzi, is the most severe manifestation of Chagas disease.CCC is characterized by cardiac inflammation and fibrosis caused by a persistent inflammatory response. Following infection, macrophages secrete inflammatory mediators such as IL-1ß, IL-6, and TNF-α to control parasitemia. Although this response contains parasite infection, it causes damage to the heart tissue. Thus, the use of immunomodulators is a rational alternative to CCC. Rho-associated kinase (ROCK) 1 and 2 are RhoA-activated serine/threonine kinases that regulate the actomyosin cytoskeleton. Both ROCKs have been implicated in the polarization of macrophages towards an M1 (pro-inflammatory) phenotype. Statins are FDA-approved lipid-lowering drugs that reduce RhoA signaling by inhibiting geranylgeranyl pyrophosphate (GGPP) synthesis. This work aims to identify the effect of statins on U937 macrophage polarization and cardiac tissue inflammation and its relationship with ROCK activity during T. cruzi infection. Methods: PMA-induced, wild-type, GFP-, CA-ROCK1- and CA-ROCK2-expressing U937 macrophages were incubated with atorvastatin, or the inhibitors Y-27632, JSH-23, TAK-242, or C3 exoenzyme incubated with or without T. cruzi trypomastigotes for 30 min to evaluate the activity of ROCK and the M1 and M2 cytokine expression and secretion profiling. Also, ROCK activity was determined in T. cruzi-infected, BALB/c mice hearts. Results: In this study, we demonstrate for the first time in macrophages that incubation with T. cruzi leads to ROCK activation via the TLR4 pathway, which triggers NF-κB activation. Inhibition of ROCKs by Y-27632 prevents NF-κB activation and the expression and secretion of M1 markers, as does treatment with atorvastatin. Furthermore, we show that the effect of atorvastatin on the NF-kB pathway and cytokine secretion is mediated by ROCK. Finally, statin treatment decreased ROCK activation and expression, and the pro-inflammatory cytokine production, promoting anti-inflammatory cytokine expression in chronic chagasic mice hearts. Conclusion: These results suggest that the statin modulation of the inflammatory response due to ROCK inhibition is a potential pharmacological strategy to prevent cardiac inflammation in CCC.


Asunto(s)
Cardiomiopatías , Enfermedad de Chagas , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Trypanosoma cruzi , Humanos , Animales , Ratones , Trypanosoma cruzi/metabolismo , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Quinasas Asociadas a rho/metabolismo , FN-kappa B/metabolismo , Atorvastatina/farmacología , Células U937 , Macrófagos/metabolismo , Enfermedad de Chagas/genética , Citocinas/metabolismo , Cardiomiopatías/metabolismo , Inflamación/metabolismo
6.
Front Cell Dev Biol ; 8: 222, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32309283

RESUMEN

As key regulators of cytoskeletal dynamics, Rho GTPases coordinate a wide range of cellular processes, including cell polarity, cell migration, and cell cycle progression. The adoption of a pro-migratory phenotype enables cancer cells to invade the stroma surrounding the primary tumor and move toward and enter blood or lymphatic vessels. Targeting these early events could reduce the progression to metastatic disease, the leading cause of cancer-related deaths. Rho GTPases play a key role in the formation of dynamic actin-rich membrane protrusions and the turnover of cell-cell and cell-extracellular matrix adhesions required for efficient cancer cell invasion. Here, we discuss the roles of Rho GTPases in cancer, their validation as therapeutic targets and the challenges of developing clinically viable Rho GTPase inhibitors. We review other therapeutic targets in the wider Rho GTPase signaling network and focus on the four best characterized effector families: p21-activated kinases (PAKs), Rho-associated protein kinases (ROCKs), atypical protein kinase Cs (aPKCs), and myotonic dystrophy kinase-related Cdc42-binding kinases (MRCKs).

7.
Front Genet ; 9: 499, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30405704

RESUMEN

Whilst cross-talk between stroma and epithelium is critical for tissue development and homeostasis, aberrant paracrine stimulation can result in neoplastic transformation. Chronic stimulation of epithelial cells with paracrine Fibroblast Growth Factor 10 (FGF10) has been implicated in multiple cancers, including breast, prostate and pancreatic ductal adenocarcinoma. Here, we examine the mechanisms underlying FGF10-induced tumourigenesis and explore novel approaches to target FGF10 signaling in cancer.

8.
Cell Rep ; 22(9): 2469-2481, 2018 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-29490281

RESUMEN

Development of resistance causes failure of drugs targeting receptor tyrosine kinase (RTK) networks and represents a critical challenge for precision medicine. Here, we show that PHLDA1 downregulation is critical to acquisition and maintenance of drug resistance in RTK-driven cancer. Using fibroblast growth factor receptor (FGFR) inhibition in endometrial cancer cells, we identify an Akt-driven compensatory mechanism underpinned by downregulation of PHLDA1. We demonstrate broad clinical relevance of our findings, showing that PHLDA1 downregulation also occurs in response to RTK-targeted therapy in breast and renal cancer patients, as well as following trastuzumab treatment in HER2+ breast cancer cells. Crucially, knockdown of PHLDA1 alone was sufficient to confer de novo resistance to RTK inhibitors and induction of PHLDA1 expression re-sensitized drug-resistant cancer cells to targeted therapies, identifying PHLDA1 as a biomarker for drug response and highlighting the potential of PHLDA1 reactivation as a means of circumventing drug resistance.


Asunto(s)
Resistencia a Antineoplásicos , Neoplasias Endometriales/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Factores de Transcripción/metabolismo , Línea Celular Tumoral , Regulación hacia Abajo/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Neoplasias Endometriales/patología , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Humanos , Lapatinib/farmacología , Modelos Biológicos , Fosfoproteínas/metabolismo , Proteómica , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Factores de Transcripción/genética , Trastuzumab/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA