RESUMEN
Dysregulated cholesterol metabolism is implicated in a number of neurological disorders. Many sterols, including cholesterol and its precursors and metabolites, are biologically active and important for proper brain function. However, spatial cholesterol metabolism in brain and the resulting sterol distributions are poorly defined. To better understand cholesterol metabolism in situ across the complex functional regions of brain, we have developed on-tissue enzyme-assisted derivatization in combination with microliquid extraction for surface analysis and liquid chromatography-mass spectrometry to locate sterols in tissue slices (10 µm) of mouse brain. The method provides sterolomic analysis at 400-µm spot diameter with a limit of quantification of 0.01 ng/mm2 It overcomes the limitations of previous mass spectrometry imaging techniques in analysis of low-abundance and difficult-to-ionize sterol molecules, allowing isomer differentiation and structure identification. Here we demonstrate the spatial distribution and quantification of multiple sterols involved in cholesterol metabolic pathways in wild-type and cholesterol 24S-hydroxylase knockout mouse brain. The technology described provides a powerful tool for future studies of spatial cholesterol metabolism in healthy and diseased tissues.
Asunto(s)
Encéfalo/metabolismo , Colesterol/análogos & derivados , Hidroxicolesteroles/metabolismo , Espectrometría de Masas/métodos , Animales , Química Encefálica , Colesterol/análisis , Colesterol/metabolismo , Hidroxicolesteroles/análisis , Límite de Detección , Masculino , Espectrometría de Masas/normas , Ratones , Ratones Endogámicos C57BLRESUMEN
This is the first report of the use of laser ablation-inductively coupled plasma time-of-flight mass spectrometry (LA-ICP-TOFMS) to analyze human malignant pleural mesothelioma (MPM) samples at the cellular level. MPM is an aggressive, incurable cancer associated with asbestos exposure, with a long latency and poor overall survival. Following careful optimization of the laser fluence, the simultaneous ablation of soft biological tissue and hard mineral fibers was possible, allowing the spatial detection of elements such as Si, Mg, Ca, and Fe, which are also present in the glass substrate. A low-dispersion LA setup was employed, which provided the high spatial resolution necessary to identify the asbestos fibers and fiber fragments in the tissue and to characterize the metallome at the cellular level (a pixel size of 2 µm), with a high speed (at 250 Hz). The multielement LA-ICP-TOFMS imaging approach enabled (i) the detection of asbestos fibers/mineral impurities within the MPM tissue samples of patients, (ii) the visualization of the tissue structure with the endogenous elemental pattern at high spatial resolution, and (iii) obtaining insights into the metallome of MPM patients with different pathologies in a single analysis run. Asbestos and other mineral fibers were detected in the lung and pleura tissue of MPM patients, respectively, based on their multielement pattern (Si, Mg, Ca, Fe, and Sr). Interestingly, strontium was detected in asbestos fibers, suggesting a link between this potential toxic element and MPM pathogenesis. Furthermore, monitoring the metallome around the talc deposit regions (characterized by elevated levels of Al, Mg, and Si) revealed significant tissue damage and inflammation caused by talc pleurodesis. LA-ICP-TOFMS results correlated to Perls' Prussian blue and histological staining of the corresponding serial sections. Ultimately, the ultra-high-speed and high-spatial-resolution capabilities of this novel LA-ICP-TOFMS setup may become an important clinical tool for simultaneous asbestos detection, metallome monitoring, and biomarker identification.
Asunto(s)
Amianto , Terapia por Láser , Mesotelioma Maligno , Amianto/toxicidad , Humanos , Espectrometría de Masas/métodos , Análisis EspectralRESUMEN
Despite being a critical molecule in the brain, mass spectrometry imaging (MSI) of cholesterol has been under-reported compared to other lipids due to the difficulty in ionizing the sterol molecule. In the present work, we have employed an on-tissue enzyme-assisted derivatization strategy to improve detection of cholesterol in brain tissue sections. We report distribution and levels of cholesterol across specific structures of the mouse brain, in a model of Niemann-Pick type C1 disease, and during brain development. MSI revealed that in the adult mouse, cholesterol is the highest in the pons and medulla and how its distribution changes during development. Cholesterol was significantly reduced in the corpus callosum and other brain regions in the Npc1 null mouse, confirming hypomyelination at the molecular level. Our study demonstrates the potential of MSI to the study of sterols in neuroscience.
Asunto(s)
Colesterol , Enfermedad de Niemann-Pick Tipo C , Animales , Encéfalo/diagnóstico por imagen , Espectrometría de Masas , Ratones , Enfermedad de Niemann-Pick Tipo C/diagnóstico por imagen , EsterolesRESUMEN
We report for the first time label-free quantification of xenobiotic metabolizing enzymes (XME), transporters, redox enzymes, proteases, and nucleases in six human skin explants and a three-dimensional living skin equivalent model from LabSkin. We aimed to evaluate the suitability of LabSkin as an alternative to animal testing for the development of topical formulations. More than 2000 proteins were identified and quantified from total cellular protein. Alcohol dehydrogenase 1C, the most abundant phase I XME in human skin, and glutathione S-transferase pi 1, the most abundant phase II XME in human skin, were present in similar abundance in LabSkin. Several esterases were quantified and esterase activity was confirmed in LabSkin using substrate-based mass spectrometry imaging. No cytochrome P450 (P450) activity was observed for the substrates tested, in agreement with the proteomics data, where the cognate P450s were absent in both human skin and LabSkin. Label-free protein quantification allowed insights into other related processes such as redox homeostasis and proteolysis. For example, the most abundant antioxidant enzymes were thioredoxin and peroxiredoxin-1. This systematic determination of functional equivalence between human skin and LabSkin is a key step toward the construction of a representative human in vitro skin model, which can be used as an alternative to current animal-based tests for chemical safety and for predicting dosage of topically administered drugs. SIGNIFICANCE STATEMENT: The use of label-free quantitative mass spectrometry to elucidate the abundance of xenobiotic metabolizing enzymes, transporters, redox enzymes, proteases, and nucleases in human skin enhance our understanding of the skin physiology and biotransformation of topical drugs and cosmetics. This will help to develop mathematical models to predict drug metabolism in human skin and to develop more robust in vitro engineered human skin tissue as alternatives to animal testing.
Asunto(s)
Alternativas a las Pruebas en Animales/métodos , Espectrometría de Masas/métodos , Proteómica/métodos , Piel , Xenobióticos/farmacocinética , Administración Tópica , Biotransformación , Técnicas de Cultivo Tridimensional de Células , Humanos , Inactivación Metabólica , Tasa de Depuración Metabólica , Modelos Biológicos , Piel/diagnóstico por imagen , Piel/efectos de los fármacos , Piel/enzimologíaRESUMEN
RATIONALE: Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) is routinely employed to monitor the distribution of compounds in tissue sections and generate two-dimensional (2D) images. Whilst informative the images do not represent the distribution of the analyte of interest through the entire organ. The generation of 3D images is an exciting field that can provide a deeper view of the analyte of interest throughout an entire organ. METHODS: Serial sections of mouse and rat lung tissue were obtained at 120 µm depth intervals and imaged individually. Homogenate registration markers were incorporated in order to aid the final 3D image construction. Using freely available software packages, the images were stacked together to generate a 3D image that showed the distribution of endogenous species throughout the lungs. RESULTS: Preliminary tests were performed on 16 serial tissue sections of mouse lungs. A 3D model showing the distribution of phosphocholine at m/z 184.09 was constructed, which defined the external structure of the lungs and trachea. Later, a second experiment was performed using 24 serial tissue sections of the left lung of a rat. Two molecular markers, identified as [PC (32:1) + K]+ at m/z 770.51 and [PC (36:4) + K]+ at m/z 820.52, were used to generate 3D models of the parenchyma and airways, respectively. CONCLUSIONS: A straightforward method to generate 3D MALDI-MS images of selected molecules in lung tissue has been presented. Using freely available imaging software, the 3D distributions of molecules related to different anatomical features were determined.
Asunto(s)
Imagenología Tridimensional/métodos , Pulmón , Imagen Molecular/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Animales , Pulmón/química , Pulmón/diagnóstico por imagen , Ratones , RatasRESUMEN
Mass spectrometry imaging (MSI) is an established analytical tool capable of defining and understanding complex tissues by determining the spatial distribution of biological molecules. Three-dimensional (3D) cell culture models mimic the pathophysiological environment of in vivo tumors and are rapidly emerging as a valuable research tool. Here, multimodal MSI techniques were employed to characterize a novel aggregated 3D lung adenocarcinoma model, developed by the group to mimic the in vivo tissue. Regions of tumor heterogeneity and the hypoxic microenvironment were observed based on the spatial distribution of a variety of endogenous molecules. Desorption electrospray ionization (DESI)-MSI defined regions of a hypoxic core and a proliferative outer layer from metabolite distribution. Targeted metabolites (e.g., lactate, glutamine, and citrate) were mapped to pathways of glycolysis and the TCA cycle demonstrating tumor metabolic behavior. The first application of imaging mass cytometry (IMC) with 3D cell culture enabled single-cell phenotyping at 1 µm spatial resolution. Protein markers of proliferation (Ki-67) and hypoxia (glucose transporter 1) defined metabolic signaling in the aggregoid model, which complemented the metabolite data. Laser ablation inductively coupled plasma (LA-ICP)-MSI analysis localized endogenous elements including magnesium and copper, further differentiating the hypoxia gradient and validating the protein expression. Obtaining a large amount of molecular information on a complementary nature enabled an in-depth understanding of the biological processes within the novel tumor model. Combining powerful imaging techniques to characterize the aggregated 3D culture highlighted a future methodology with potential applications in cancer research and drug development.
Asunto(s)
Adenocarcinoma del Pulmón/diagnóstico , Ácido Cítrico/análisis , Glutamina/análisis , Ácido Láctico/análisis , Neoplasias Pulmonares/diagnóstico , Adenocarcinoma del Pulmón/metabolismo , Ácido Cítrico/metabolismo , Glutamina/metabolismo , Humanos , Ácido Láctico/metabolismo , Neoplasias Pulmonares/metabolismo , Imagen Multimodal , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Células Tumorales CultivadasRESUMEN
Introduction: Three-dimensional (3D) cell cultures have become increasingly important materials to investigate biological processes and drug efficacy and toxicity. The ability of 3D cultures to mimic the physiology of primary tissues and organs in the human body enables further insight into cellular behavior and is hence highly desirable in early-stage drug development. Analyzing the spatial distribution of drug compounds and endogenous molecules provides an insight into the efficacy of a drug whilst simultaneously giving information on biological responses. Areas Covered: In this review we will examine the main 3D cell culture systems employed and applications, which describe their integration with mass spectrometry imaging (MSI). Expert Opinion: MSI is a powerful technique that can map a vast range of molecules simultaneously in tissues without the addition of labels that can provide insights into the efficacy and safety of a new drug. The combination of MSI and 3D cell cultures has emerged as a promising tool in early-stage drug analysis. However, the most common administration route for pharmaceutical drugs is via oral delivery. The use of MSI in combination with models of the GI tract is an area that has been little explored to date, the reasons for this are discussed.
Asunto(s)
Desarrollo de Medicamentos , Organoides , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Descubrimiento de Drogas , HumanosRESUMEN
RATIONALE: Malignant pleural mesothelioma is an extremely aggressive and incurable malignancy associated with prior exposure to asbestos fibres. Difficulties remain in relation to early diagnosis, notably due to impeded identification of asbestos in lung tissue. This study describes a novel laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) imaging approach to identify asbestos within mesothelioma models with clinical significance. METHODS: Human mesothelioma cells were exposed to different types of asbestos fibres and prepared on plastic slides for LA-ICP-MS analysis. No further sample preparation was required prior to analysis, which was performed using an NWR Image 266 nm laser ablation system coupled to an Element XR sector-field ICP mass spectrometer, with a lateral resolution of 2 µm. Data was processed using LA-ICP-MS ImageTool v1.7 with the final graphic production made using DPlot software. RESULTS: Four different mineral fibres were successfully identified within the mesothelioma samples based on some of the most abundant elements that make up these fibres (Si, Mg and Fe). Using LA-ICP-MS as an imaging tool provided information on the spatial distribution of the fibres at cellular level, which is essential in asbestos detection within tissue samples. Based on the metal counts generated by the different types of asbestos, different fibres can be identified based on shape, size, and elemental composition. Detection of Ca was attempted but requires further optimisation. CONCLUSIONS: Detection of asbestos fibres in lung tissues is very useful, if not necessary, to complete the pathological dt9iagnosis of asbestos-related malignancies in the medicolegal field. For the first time, this study demonstrates the successful application of LA-ICP-MS imaging to identify asbestos fibres and other mineral fibres within mesothelioma samples. Ultimately, high-resolution, fast-speed LA-ICP-MS analysis has the potential to be integrated into clinical workflow to aid earlier detection and stratification of mesothelioma patient samples.
Asunto(s)
Amianto , Neoplasias Pulmonares , Espectrometría de Masas/métodos , Mesotelioma Maligno , Microscopía/métodos , Amianto/análisis , Amianto/química , Línea Celular Tumoral , Humanos , Rayos Láser , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/patología , Mesotelioma Maligno/diagnóstico por imagen , Mesotelioma Maligno/patologíaRESUMEN
A 3D cell culture is an artificially created environment in which cells are permitted to grow/interact with their surroundings in all three dimensions. Derived from 3D cell culture, organoids are generally small-scale constructs of cells that are fabricated in the laboratory to serve as 3D representations of in vivo tissues and organs. Due to regulatory, economic and societal issues concerning the use of animals in scientific research, it seems clear that the use of 3D cell culture and organoids in for example early stage studies of drug efficacy and toxicity will increase. The combination of such 3D tissue models with mass spectrometry imaging provides a label-free methodology for the study of drug absorption/penetration, drug efficacy/toxicity, and drug biotransformation. In this article, some of the successes achieved to date and challenges to be overcome before this methodology is more widely adopted are discussed.
Asunto(s)
Descubrimiento de Drogas/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional/métodos , Espectrometría de Masas/métodos , Organoides/metabolismo , Esferoides Celulares/metabolismo , Técnicas de Cultivo de Tejidos/métodos , Animales , Humanos , Modelos Biológicos , Organoides/citología , Organoides/efectos de los fármacos , Esferoides Celulares/citología , Esferoides Celulares/efectos de los fármacosRESUMEN
The combination of microspotting of analytical and internal standards, matrix sublimation, and recently developed software for quantitative mass spectrometry imaging has been used to develop a high-resolution method for the determination of terbinafine hydrochloride in the epidermal region of a full thickness living skin equivalent model. A quantitative assessment of the effect of the addition of the penetration enhancer (dimethyl isosorbide (DMI)) to the delivery vehicle has also been performed, and data have been compared to those obtained from LC-MS/MS measurements of homogenates of isolated epidermal tissue. At 10% DMI, the levels of signal detected for the drug in the epidermis were 0.20 ± 0.072 mg/g tissue for QMSI and 0.28 ± 0.040 mg/g tissue for LC-MS/MS at 50% DMI 0.69 ± 0.23 mg/g tissue for QMSI and 0.66 ± 0.057 mg/g tissue for LC-MS/MS. Comparison of means and standard deviations indicates no significant difference between the values obtained by the two methods.
Asunto(s)
Antifúngicos/análisis , Absorción Cutánea , Piel/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Terbinafina/análisis , Antifúngicos/metabolismo , Isosorbida/análogos & derivados , Isosorbida/metabolismo , Terbinafina/metabolismoRESUMEN
Described is a quantitative-mass-spectrometry-imaging (qMSI) methodology for the analysis of lactate and glutamate distributions in order to delineate heterogeneity among mouse tumor models used to support drug-discovery efficacy testing. We evaluate and report on preanalysis-stabilization methods aimed at improving the reproducibility and efficiency of quantitative assessments of endogenous molecules in tissues. Stability experiments demonstrate that optimum stabilization protocols consist of frozen-tissue embedding, post-tissue-sectioning desiccation, and storage at -80 °C of tissue sections sealed in vacuum-tight containers. Optimized stabilization protocols are used in combination with qMSI methodology for the absolute quantitation of lactate and glutamate in tumors, incorporating the use of two different stable-isotope-labeled versions of each analyte and spectral-clustering performed on each tissue section using k-means clustering to allow region-specific, pixel-by-pixel quantitation. Region-specific qMSI was used to screen different tumor models and identify a phenotype that has low lactate heterogeneity, which will enable accurate measurements of lactate modulation in future drug-discovery studies. We conclude that using optimized qMSI protocols, it is possible to quantify endogenous metabolites within tumors, and region-specific quantitation can provide valuable insight into tissue heterogeneity and the tumor microenvironment.
Asunto(s)
Ácido Glutámico/análisis , Ácido Láctico/análisis , Espectrometría de Masas , Animales , Femenino , Ácido Glutámico/metabolismo , Ácido Láctico/metabolismo , Ratones , Ratones Desnudos , Neoplasias Experimentales/química , Neoplasias Experimentales/diagnóstico por imagen , Neoplasias Experimentales/metabolismoRESUMEN
MALDI-mass spectrometry imaging (MALDI-MSI) has been shown to allow the study of protein distribution and identification directly within formalin-fixed paraffin-embedded (FFPE) tissue sections. However, direct protein identification from tissue sections remains challenging due to signal interferences and/or existing post-translational or other chemical modifications. The use of antigen retrieval (AR) has been demonstrated for unlocking proteins prior to in situ enzymatic digestion and MALDI-MSI analysis of FFPE tissue sections. In the work reported here, the identification of proline oxidation, which may occur when performing the AR protocol, is described. This facilitated and considerably increased the number of identified peptides when adding proline oxidation as a variable modification to the MASCOT search criteria. This article is part of a Special Issue entitled: MALDI Imaging, edited by Dr. Corinna Henkel and Prof. Peter Hoffmann.
Asunto(s)
Antígenos/metabolismo , Formaldehído/química , Neoplasias/diagnóstico , Neoplasias/patología , Parafina/química , Prolina/metabolismo , Humanos , Oxidación-Reducción , Péptidos/metabolismo , Prolina/química , Procesamiento Proteico-Postraduccional/fisiología , Proteínas/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodosRESUMEN
RATIONALE: The incubation of CPAQOP (1-[(2R)-2-[[4-[3-chloro-4-(2-pyridyloxy)anilino]quinazolin-5-yl]oxymethyl]-1-piperidyl]-2-hydroxy) with human liver microsomes generated several metabolites that highlighted the hydroxyacetamide side chain was a major site of metabolism for the molecule. The metabolites were derived predominantly from oxidative biotransformations; however, two unexpected products were detected by liquid chromatography/ultraviolet/mass spectrometry (LC/UV/MS) and identified as methanol adducts. This observation prompted further LC/MS investigations into their formation. METHODS: Three separate incubations of CPAQOP were conducted in human liver microsomes; Naïve, fortified with methoxyamine and fortified with glutathione. Separation was achieved via ultra-high-performance liquid chromatography with either methanol or acetonitrile gradients containing formic acid. MS analysis was conducted by electrospray ionisation LTQ Orbitrap mass spectrometry acquiring accurate mass full scan, data-dependent MS2 and all ion fragmentation. RESULTS: No methanol adducts were detected by MS when acetonitrile was used in the mobile phase instead of methanol, verifying that a metabolite was reacting with methanol on column. Although this reactive metabolite could not be isolated or structurally characterised by LC/MS directly, product ion spectra of the methanol adducts confirmed addition of methanol on the hydroxyacetamide side chain. Additional experiments using methoxyamine showed the disappearance of the two methanol adducts and appearance of a methoxyamine adduct, confirming the presence of an aldhyde. Product ion spectra of the methoxyamine adduct confirmed addition of methoxyamine to the hydroxyacetamide side chain. CONCLUSIONS: The proposed bioactivation of CPAQOP occurred via the reactive aldehyde intermediate, which readily reacted with methanol in the mobile phase to form a pair of isomeric hemiacetal methanol adducts. In acidified methanol the equilibrium favoured the methanol adduct and in acidified acetonitrile it favoured the hydrate; therefore, the reactive aldehyde metabolite was not detected and could not be structurally characterised directly. Copyright © 2016 John Wiley & Sons, Ltd.
Asunto(s)
Aldehídos/metabolismo , Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masas/métodos , Metanol/metabolismo , Microsomas Hepáticos/metabolismo , Piperidinas/metabolismo , Aldehídos/análisis , Aldehídos/química , Glutatión , Humanos , Hidroxilaminas , Metanol/análisis , Metanol/química , Piperidinas/químicaRESUMEN
Mass spectrometry imaging (MSI) is a powerful tool for the study of intact tissue sections. The use of matrix-assisted laser desorption/ionisation (MALDI) MSI for the study of the distribution and effect of emollient treatment on sections of reconstructed living skin equivalents during their development and maturation is described. Living skin equivalent (LSE) samples were obtained at 14days development, re-suspended in maintenance medium and incubated for 24h after delivery. The medium was changed, the LSE treated with either Physiogel A.I.® or Oilatum Junior® emollients and then re-incubated and samples taken at 4, 6 and 24h time points. Mass spectra and mass spectral images were recorded from 12µm sections of the LSE taken at each time point for comparison using MALDI mass spectrometry (MS). It was possible to detect ions characteristic of each emollient in the LSE. In addition a number of lipid species previously reported as being significant in the maturation of the LSE were observable. At the 24h time point, the images revealed what appeared to be differences in the organisation of the skin cells observed across the Physiogel A.I.® treatment group tissue sections when directly compared to the untreated tissue group.
Asunto(s)
Etanolaminas/química , Lípidos/aislamiento & purificación , Ácidos Palmíticos/química , Piel/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Amidas , Emolientes/efectos adversos , Emolientes/farmacología , Etanolaminas/metabolismo , Humanos , Lípidos/química , Ácidos Palmíticos/metabolismo , Piel/efectos de los fármacosRESUMEN
A bottom up in situ proteomic method has been developed enabling the mapping of multiple blood signatures on the intact ridges of blood fingermarks by Matrix Assisted Laser Desorption Mass Spectrometry Imaging (MALDI-MSI). This method, at a proof of concept stage, builds upon recently published work demonstrating the opportunity to profile and identify multiple blood signatures in bloodstains via a bottom up proteomic approach. The present protocol addresses the limitation of the previously developed profiling method with respect to destructivity; destructivity should be avoided for evidence such as blood fingermarks, where the ridge detail must be preserved in order to provide the associative link between the biometric information and the events of bloodshed. Using a blood mark reference model, trypsin concentration and spraying conditions have been optimised within the technical constraints of the depositor eventually employed; the application of MALDI-MSI and Ion Mobility MS have enabled the detection, confirmation and visualisation of blood signatures directly onto the ridge pattern. These results are to be considered a first insight into a method eventually informing investigations (and judicial debates) of violent crimes in which the reliable and non-destructive detection and mapping of blood in fingermarks is paramount to reconstruct the events of bloodshed.
Asunto(s)
Biomarcadores/sangre , Genética Forense/métodos , Proteómica , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Humanos , Tripsina/químicaRESUMEN
Arginine is an important amino acid but has been barely studied in plants. The little research that has been done indicates that the pathways of synthesis are similar to those found in animals and procaryotes. However little is known about the cellular and tissue localization of the amino acid in plants. The research reported in this paper was designed to examine whether MALDI-MSI was sufficiently sensitive to examine the distribution of this amino acid in plant material, and whether the synthetic pathways were co-located. In wheat and orchid roots, the amount of arginine in tissues varies greatly and the pathways for its synthesis were not always detected with the amino acid.
Asunto(s)
Arginina/biosíntesis , Imagen Molecular/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Arginina/metabolismo , Orchidaceae/química , Orchidaceae/metabolismo , Raíces de Plantas/química , Raíces de Plantas/metabolismo , Triticum/química , Triticum/metabolismoRESUMEN
MALDI-MS Imaging is a novel label-free technique that can be used to visualize the changes in multiple mass responses following treatment. Following treatment with proinflammatory cytokine interleukin-22 (IL-22), the epidermal differentiation of Labskin, a living skin equivalent (LSE), successfully modeled psoriasis in vitro. Masson's trichrome staining enabled visualization and quantification of epidermal differentiation between the untreated and IL-22 treated psoriatic LSEs. Matrix-assisted laser desorption ionization mass spectrometry imaging was used to observe the spatial location of the psoriatic therapy drug acetretin following 48 h treatments within both psoriatic and normal LSEs. After 24 h, the drug was primarily located in the epidermal regions of both the psoriatic and nonpsoriatic LSE models whereas after 48 h it was detectible in the dermis.
Asunto(s)
Epidermis/ultraestructura , Psoriasis/genética , Piel/efectos de los fármacos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Animales , Diferenciación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Epidermis/efectos de los fármacos , Humanos , Imagenología Tridimensional/métodos , Interleucinas/administración & dosificación , Ratones , Psoriasis/patología , Piel/metabolismo , Piel/fisiopatología , Ingeniería de Tejidos/métodos , Interleucina-22RESUMEN
Liquid extraction surface analysis mass spectrometry (LESA-MS) is a surface sampling technique that incorporates liquid extraction from the surface of tissue sections with nanoelectrospray mass spectrometry. Traditional tissue analysis techniques usually require homogenization of the sample prior to analysis via high-performance liquid chromatography mass spectrometry (HPLC-MS), but an intrinsic weakness of this is a loss of all spatial information and the inability of the technique to distinguish between actual tissue penetration and response caused by residual blood contamination. LESA-MS, in contrast, has the ability to spatially resolve drug distributions and has historically been used to profile discrete spots on the surface of tissue sections. Here, we use the technique as a mass spectrometry imaging (MSI) tool, extracting points at 1 mm spatial resolution across tissue sections to build an image of xenobiotic and endogenous compound distribution to assess drug blood-brain barrier penetration into brain tissue. A selection of penetrant and "nonpenetrant" drugs were dosed to rats via oral and intravenous administration. Whole brains were snap-frozen at necropsy and were subsequently sectioned prior to analysis by matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) and LESA-MSI. MALDI-MSI, as expected, was shown to effectively map the distribution of brain penetrative compounds but lacked sufficient sensitivity when compounds were marginally penetrative. LESA-MSI was used to effectively map the distribution of these poorly penetrative compounds, highlighting its value as a complementary technique to MALDI-MSI. The technique also showed benefits when compared to traditional homogenization, particularly for drugs that were considered nonpenetrant by homogenization but were shown to have a measurable penetration using LESA-MSI.
Asunto(s)
Encéfalo/metabolismo , Preparaciones Farmacéuticas/análisis , Farmacocinética , Espectrometría de Masa por Ionización de Electrospray/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Animales , Masculino , Ratas , Ratas Wistar , Distribución TisularRESUMEN
RATIONALE: 5,6-Dimethylxanthenone-4-acetic acid (DMXAA) is a low molecular weight drug of the flavonoid group, which has an anti-vascular effect in tumours causing endothelial cell apoptosis and activation of cytokines. Flavonoid-based compounds have been reported to lead to an upregulation in the expression of lysophosphatidylcholines (LPC)-type lipids in solid tumours. A study employing TLC/MALDI-MS and MALDI-MS imaging to examine LS174T colorectal adenocarcinoma xenografts following administration of DMXAA has been conducted into this effect. METHODS: LS174T colorectal adenocarcinoma xenografts grown in male immune-deficient mice were treated with 27.5 mg/kg DMXAA. The control (before treatment) and 4 h and 24 h post-treatment tumours were excised and divided into two. MALDI-MS imaging experiments were carried out on 12 µm cryosections sections taken from one half of the tumours and from the other half the lipids were extracted and analysed by TLC/MALDI-MS. These experiments were carried out in triplicate. RESULTS: Statistical analysis of the MALDI-MS imaging data set indicated an increased amount of LPC in the 24 h post-treated sample and a decreased amount of PC in the 24 h post-treated sample, compared with the 4 h post-treated sample and the control. These effects were confirmed by the TLC/MALDI-MS data. The lipid extracts were separated into six spots on the TLC plate. These were identified as arising from different lipids classes, i.e. LPC, sphingomyelins (SM), phosphatidylcholines (PC) and phosphatidylethanolamines (PE). The TLC/MALDI-MS data indicated that LPC were highly expressed in the 4 h and 24 h post-treated tumour samples compared with the control. Examination of the mass spectrometric images confirms this increase and demonstrates additionally that the increase in the signals arising from LPC appears to be localised primarily within the central areas of the xenograft. CONCLUSIONS: An increase in expression of LPC lipids in solid tumours treated with DMXAA has been demonstrated and shown to be localised in the central area of the tumour.
Asunto(s)
Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/patología , Antineoplásicos/uso terapéutico , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Fosfolípidos/análisis , Xantonas/uso terapéutico , Animales , Cromatografía en Capa Delgada/métodos , Colon/efectos de los fármacos , Colon/patología , Masculino , Ratones , Ratones Desnudos , Recto/efectos de los fármacos , Recto/patología , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodosRESUMEN
Hydrazine-based derivatization reagents have been used to detect the presence of the carbonyl containing glucocorticoid fluticasone proprionate in rat lung tissue by MALDI-MSI. Such reagents also act as a matrix for analysis by MALDI-MS and have been termed "reactive matrices". Cryosections of rat lung tissue (12 µm), spotted with a range of concentrations of fluticasone proprionate, were derivatized in situ with 2,4-dinitrophenylhydrazine (DNPH) and 4-dimethylamino-6-(4-methoxy-1-naphthyl)-1,3,5-triazine-2-hydrazine (DMNTH) by the use of an acoustic reagent spotter. It has been demonstrated that DMNTH gave superior results compared to DNPH and that analysis of samples immediately after application of DMNTH resulted in the detection of the protonated hydrazone derivative ([MD + H](+)) of fluticasone propionate at a concentration of 500 ng/µL. It has been further shown that a prolonged reaction time (~48 h) improves the detection limit of the protonated hydrazone derivative to 50 ng/µL and that improvements in sensitivity and limits of detection are obtained when a conventional MALDI matrix CHCA is employed in conjunction with the DNPH/DMNTH reactive matrix.