Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
J Org Chem ; 89(7): 5118-5125, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38471001

RESUMEN

A mild and modular approach to the total synthesis of the WHO-listed essential medicine desferrioxamine B is described. Hydroxamic acid fragments were installed under mild conditions, a generalized divergent acylation procedure used to access two monomer precursors, and a transfer hydrogenation reaction used to unmask the hydroxamic acid moieties. Desferrioxamine B was generated over ten linear steps as the formate salt in 17% overall yield using standard amide coupling conditions or in 13% overall yield using microwave-assisted amide coupling conditions.

2.
Eur J Nucl Med Mol Imaging ; 49(12): 4037-4047, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35779082

RESUMEN

PURPOSE: This study assesses human biodistribution, radiation dosimetry, safety and tumour uptake of cell death indicator labelled with 68Ga ([68Ga]Ga-CDI), a novel radiopharmaceutical that can image multiple forms of cell death. METHODS: Five participants with at least one extracranial site of solid malignancy > 2 cm and no active cancer treatment in the 8 weeks prior to the study were enrolled. Participants were administered 205 ± 4.1 MBq (range, 200-211 MBq) of [68Ga]Ga-CDI and 8 serial PET scans acquired: the first commencing immediately and the last 3 h later. Participants were monitored for clinical, laboratory and electrocardiographic side effects and adverse events. Urine and blood radioactivity was measured. Spherical volumes of interest were drawn over tumour, blood pool and organs to determine biodistribution and calculate dosimetry. In one participant, tumour specimens were analysed for cell death using terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) staining. RESULTS: [68Ga]Ga-CDI is safe and well-tolerated with no side effects or adverse events. [68Ga]Ga-CDI is renally excreted, demonstrates low levels of physiologic uptake in the other organs and has excellent imaging characteristics. The mean effective dose was 2.17E - 02 ± 4.61E - 03 mSv/MBq. It images constitutive tumour cell death and correlates with tumour cell death on histology. CONCLUSION: [68Ga]Ga-CDI is a novel cell death imaging radiopharmaceutical that is safe, has low radiation dosimetry and excellent biodistribution and imaging characteristics. It has potential advantages over previously investigated radiopharmaceuticals for imaging of cell death and has progressed to a proof-of-concept trial. TRIAL REGISTRATION: ACTRN12621000641897 (28/5/2021, retrospectively registered).


Asunto(s)
Neoplasias , Radiofármacos , Muerte Celular , ADN Nucleotidilexotransferasa/metabolismo , Electrones , Radioisótopos de Galio , Humanos , Neoplasias/diagnóstico por imagen , Neoplasias/metabolismo , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Tomografía de Emisión de Positrones/efectos adversos , Tomografía de Emisión de Positrones/métodos , Radiometría , Radiofármacos/efectos adversos , Distribución Tisular
3.
Chembiochem ; 21(10): 1433-1445, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-31863526

RESUMEN

This work aimed to undertake the in situ conversion of the terminal amine groups of bacterial desferrioxamine (DFO) siderophores, including desferrioxamine B (DFOB), to azide groups to enable downstream click chemistry. Initial studies trialed a precursor-directed biosynthesis (PDB) approach. Supplementing Streptomyces pilosus culture with blunt-end azido/amine non-native substrates designed to replace 1,5-diaminopentane as the native diamine substrate in the terminal amine position of DFOB did not produce azido-DFOB. Addition of the diazo-transfer reagent imidazole-1-sulfonyl azide hydrogen sulfate to spent S. pilosus medium that had been cultured in the presence of 1,4-diaminobutane, as a viable native substrate to expand the suite of native DFO-type siderophores, successfully generated the cognate suite of azido-DFO analogues. CuI -mediated or strain-promoted CuI -free click chemistry reactions between this minimally processed mixture and the appropriate alkyne-bearing biotin reagents produced the cognate suite of 1,4-disubstituted triazole-linked DFO-biotin compounds as potential molecular probes, detected as FeIII -loaded species. The amine-to-azide transformation of amine-bearing natural products in complex mixtures by the direct addition of a diazo-transfer reagent to deliver functional click chemistry reagents adds to the toolbox for chemical proteomics, chemical biology, and drug discovery.


Asunto(s)
Aminas/química , Azidas/química , Química Clic/métodos , Deferoxamina/química , Sideróforos/química , Streptomyces/metabolismo
4.
Bioorg Med Chem Lett ; 29(18): 2581-2586, 2019 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-31400937

RESUMEN

Hydroxamic acid compounds 1-10 containing a N-hydroxycinnamamide scaffold and a 4-(benzylamino)methyl cap group that was either unsubstituted (1) or substituted with one (2-4) or two (5-10) methoxy groups in variable positions were prepared as inhibitors of Zn(II)-containing histone deacetylases (HDACs). The 3,4- (9) and 3,5- (10) bis-methoxy-substituted compounds were the least potent against HeLa nuclear extract, HDAC1 and HDAC2. Molecular modelling showed methoxy groups in the 3-, 4- and 5-position, but not the 2-position, had unfavourable steric interactions with the G32-H33-P34 triad on a loop at the surface of the HDAC2 active site cavity. An HDAC1 homology model showed potential ionic (E243..K288) and cation-pi (K247..F292) interactions between helix 10 and helix 11 that were absent in HDAC2 ((G243..K288) and (K247..V292)). This surface-located interhelical constraint could inform the design of bitopic HDAC1 and HDAC2 selective ligands using an allosteric approach, and/or protein-protein interaction (PPI) inhibitors.


Asunto(s)
Cinamatos/farmacología , Histona Desacetilasa 1/antagonistas & inhibidores , Histona Desacetilasa 2/antagonistas & inhibidores , Inhibidores de Histona Desacetilasas/farmacología , Ácidos Hidroxámicos/farmacología , Bibliotecas de Moléculas Pequeñas/farmacología , Cinamatos/química , Relación Dosis-Respuesta a Droga , Histona Desacetilasa 1/metabolismo , Histona Desacetilasa 2/metabolismo , Inhibidores de Histona Desacetilasas/síntesis química , Inhibidores de Histona Desacetilasas/química , Humanos , Ácidos Hidroxámicos/síntesis química , Ácidos Hidroxámicos/química , Modelos Moleculares , Estructura Molecular , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad
5.
Inorg Chem ; 58(20): 13591-13603, 2019 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-31185545

RESUMEN

An expedited synthesis of endo-hydroxamic acid aminocarboxylic acid (endo-HXA) compounds has been developed. These monomeric ligands are relevant to the synthesis of metal-macrocycle complexes using metal-templated synthesis (MTS), and the downstream production of apomacrocycles. Macrocycles can display useful drug properties and be used as ligands for radiometals in medical imaging applications, which supports methodological advances in accessing this class of molecule. Six endo-HXA ligands were prepared that contained methylene groups, ether atoms, or thioether atoms in different regions of the monomer (1-6). MTS using a 1:2 Fe(III)/ligand ratio furnished six dimeric hydroxamic acid macrocycles complexed with Fe(III) (1a-6a). The corresponding apomacrocycles (1b-6b) were produced upon treatment with diethylenetriaminepentaacetic acid (DTPA). Constitutional isomers of the apomacrocycles that contained one ether oxygen atom in the diamine-containing (2b) or dicarboxylic acid-containing (3b) region were well resolved by reverse-phase high-performance liquid chromatography (RP-HPLC). Density functional theory calculations were used to compute the structures and solvated molecular properties of 1b-6b and showed that the orientation of the amide bonds relative to the pseudo-C2 axis was close to parallel in 1b, 2b, and 4b-6b but tended toward perpendicular in 3b. This conformational constraint in 3b reduced the polarity compared with 2b, consistent with the experimental trend in polarity observed using RP-HPLC. The improved synthesis of endo-HXA ligands allows expanded structural diversity in MTS-derived macrocycles and the ability to modulate macrocycle properties.

6.
Biometals ; 32(3): 395-408, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30701380

RESUMEN

Desferrioxamine B (DFOB) is a siderophore native to Streptomyces pilosus biosynthesised by the DesABCD enzyme cluster as a high affinity Fe(III) chelator. Although DFOB has a long clinical history for the treatment of chronic iron overload, limitations encourage the development of new analogues. This review describes a recent body of work that has used precursor-directed biosynthesis (PDB) to access new DFOB analogues. PDB exploits the native biosynthetic machinery of a producing organism in culture medium augmented with non-native substrates that compete against native substrates during metabolite assembly. The method allows access to analogues of natural products using benign methods, compared to multistep organic synthesis. The disadvantages of PDB are the production of metabolites in low yield and the need to purify complex mixtures. Streptomyces pilosus medium was supplemented with different types of non-native diamine substrates to compete against native 1,5-diaminopentane to generate DFOB analogues containing alkene bonds, fluorine atoms, ether or thioether functional groups, or a disulfide bond. All analogues retained function as Fe(III) chelators and have properties that could broaden the utility of DFOB. These PDB studies have also added knowledge to the understanding of DFOB biosynthesis.


Asunto(s)
Deferoxamina/metabolismo , Quelantes del Hierro/metabolismo , Streptomyces/química , Deferoxamina/análogos & derivados , Deferoxamina/química , Quelantes del Hierro/química , Estructura Molecular , Streptomyces/metabolismo
7.
J Biol Inorg Chem ; 23(7): 969-982, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29946977

RESUMEN

Dihydroxamic acid macrocyclic siderophores comprise four members: putrebactin (putH2), avaroferrin (avaH2), bisucaberin (bisH2), and alcaligin (alcH2). This mini-review collates studies of the chemical biology and coordination chemistry of these macrocycles, with an emphasis on putH2. These Fe(III)-binding macrocycles are produced by selected bacteria to acquire insoluble Fe(III) from the local environment. The macrocycles are optimally pre-configured for Fe(III) binding, as established from the X-ray crystal structure of dinuclear [Fe2(alc)3] at neutral pH. The dimeric macrocycles are biosynthetic products of two endo-hydroxamic acid ligands flanked by one amine group and one carboxylic acid group, which are assembled from 1,4-diaminobutane and/or 1,5-diaminopentane as initial substrates. The biosynthesis of alcH2 includes an additional diamine C-hydroxylation step. Knowledge of putH2 biosynthesis supported the use of precursor-directed biosynthesis to generate unsaturated putH2 analogues by culturing Shewanella putrefaciens in medium supplemented with unsaturated diamine substrates. The X-ray crystal structures of putH2, avaH2 and alcH2 show differences in the relative orientations of the amide and hydroxamic acid functional groups that could prescribe differences in solvation and other biological properties. Functional differences have been borne out in biological studies. Although evolved for Fe(III) acquisition, solution coordination complexes have been characterised between putH2 and oxido-V(IV/V), Mo(VI), or Cr(V). Retrosynthetic analysis of 1:1 complexes of [Fe(put)]+, [Fe(ava)]+, and [Fe(bis)]+ that dominate at pH < 5 led to a forward metal-templated synthesis approach to generate the Fe(III)-loaded macrocycles, with apo-macrocycles furnished upon incubation with EDTA. This mini-review aims to capture the rich chemistry and chemical biology of these seemingly simple compounds.


Asunto(s)
Complejos de Coordinación/metabolismo , Compuestos Férricos/metabolismo , Ácidos Hidroxámicos/metabolismo , Péptidos Cíclicos/metabolismo , Putrescina/análogos & derivados , Succinatos/metabolismo , Complejos de Coordinación/síntesis química , Complejos de Coordinación/química , Compuestos Férricos/química , Ácidos Hidroxámicos/química , Estructura Molecular , Péptidos Cíclicos/química , Putrescina/química , Putrescina/metabolismo , Succinatos/química
8.
Chembiochem ; 18(4): 368-373, 2017 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-27943581

RESUMEN

A combinatorial pool of hydroxamic acid fragments as potential metalloprotein drug leads was generated from the enzymatic hydrolysis of the natural product desferrioxamine B (DFOB). DFOB is a metabolite produced by Streptomyces pilosus for iron acquisition, and can be selectively catabolised by Niveispirillum irakense to access carbon for growth. The supernatant of a DFOB-supplemented culture of N. irakense was analysed by LC-MS at intervals over 168 h. This identified a mixture of endo-hydroxamic acid fragments that contained reactive terminal groups. The supernatants from two cultures (at 48 h and 168 h) were reacted with 1,8-naphthalic anhydride in a microwave synthesiser to generate pools of scriptaid analogues, which were screened against ZnII -containing histone deacetylases (HDACs) and FeIII -containing 5-lipoxygenase (5-LO). Compound S2 showed relative potency against 5-LO (IC50 =59 µm; BWA4C, 17 µm); it was 28-fold more selective towards 5-LO than HDAC1. Compound S1 inhibited HDAC1 but not 5-LO. Enzyme-mediated reverse biosynthesis could yield new benefits from structurally complex natural products in drug design.


Asunto(s)
Productos Biológicos/química , Química Farmacéutica , Técnicas Químicas Combinatorias , Descubrimiento de Drogas/métodos , Cromatografía Liquida , Pruebas de Enzimas , Concentración 50 Inhibidora , Estructura Molecular , Espectrometría de Masa por Ionización de Electrospray
9.
Bioorg Med Chem Lett ; 27(8): 1698-1704, 2017 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-28285915

RESUMEN

The death of dopaminergic neurons is a major pathological hallmark of Parkinson's disease (PD). Elevated iron within the substantia nigra of the PD brain is thought to catalyze this neuronal death through hydroxyl radical-derived oxidative damage. Removing this excess iron presents a potential therapeutic strategy for PD. Seventeen derivatives of the non-toxic iron chelator desferrioxamine B (DFOB) were prepared by the conjugation of adamantyl- (1-4, 8-12), deconstructed adamantyl units (5-7), norborna(e)ne- (13-16) or bicyclo[2.2.2]octane-based (17) ancillary fragments to the terminal amine group. The range of experimental logP values of 1-17 (logP=0.15-2.82) was greater than water soluble DFOB (logP -2.29), with the increased hydrophobicity designed to improve cell membrane carriage to facilitate intracellular iron sequestration. The first activity screen showed compounds with methyl-substituted adamantyl (1-3), noradamantyl (5), or 1-pentylbicyclo[2.2.2]octane (17) ancillary groups significantly rescued iron-mediated oxidative stress in confluent PD-relevant SK-N-BE2-M17 neuroblastoma cells (M17 cells) exposed to 1,1'-dimethyl-4,4'-bipyridinium (paraquat, PQ) or H2O2. The second dose-dependence screen ranked 1-3 and 17 as the top candidates (EC50 ∼10µM) in the rescue of PQ-treated M17 cells. The ancillary fragments of 1-3 and 17 clustered in a region defined by a close-to-zero dipole moment, logP values of 2-2.8 and a surface area:volume ratio of 0.60-0.61. Results of iron leaching studies indicate that the compounds may be operating via mechanisms beyond solely removing intracellular iron. The DFOB conjugates with methyl-substituted adamantyl ancillary groups (1-3) were the top and most consistent performers in this class of compound designed for PD.


Asunto(s)
Deferoxamina/análogos & derivados , Deferoxamina/farmacología , Quelantes del Hierro/química , Quelantes del Hierro/farmacología , Hierro/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Astrocitos/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Humanos , Enfermedad de Parkinson/metabolismo , Compuestos Policíclicos/química , Compuestos Policíclicos/farmacología
10.
Inorg Chem ; 56(6): 3719-3728, 2017 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-28245117

RESUMEN

The reaction between Zr(IV) and the forward endo-hydroxamic acid monomer 4-[(5-aminopentyl)(hydroxy)amino]-4-oxobutanoic acid (for-PBH) in a 1:4 stoichiometry in the presence of diphenylphosphoryl azide and triethylamine gave the octadentate Zr(IV)-loaded tetrameric hydroxamic acid macrocycle for-[Zr(DFOT1)] ([M + H]+ calc 887.3, obs 887.2). In this metal-templated synthesis (MTS) approach, the coordination preferences of Zr(IV) directed the preorganization of four oxygen-rich bidentate for-PBH ligands about the metal ion prior to ring closure under peptide coupling conditions. The replacement of for-PBH with 5-[(5-aminopentyl) (hydroxy)amino]-5-oxopentanoic acid (for-PPH), which contained an additional methylene group in the dicarboxylic acid region of the monomer, gave the analogous Zr(IV)-loaded macrocycle for-[Zr(PPDFOT1)] ([M + H]+ calc 943.4, obs 943.1). A second, well-resolved peak in the liquid chromatogram from the for-PPH MTS system also characterized as a species with [M + H]+ 943.3, and was identified as the octadentate complex between Zr(IV) and two dimeric tetradentate hydroxamic acid macrocycles for-[Zr(PPDFOT1D)2]. Treatment of for-[Zr(PPDFOT1)] or for-[Zr(PPDFOT1D)2] with EDTA at pH 4.0 gave the respective hydroxamic acid macrocycles as free ligands: octadentate PPDFOT1 or two equivalents of tetradentate PPDFOT1D (homobisucaberin, HBC). At pH values closer to physiological, EDTA treatment of for-[Zr(DFOT1)], for-[Zr(PPDFOT1)], or Zr(IV) complexes with related linear tri- or tetrameric hydroxamic acid ligands showed the macrocycles were more resistant to the release of Zr(IV), which has implications for the design of ligands optimized for the use of Zr(IV)-89 in positron emission tomography (PET) imaging of cancer.


Asunto(s)
Quelantes/síntesis química , Complejos de Coordinación/síntesis química , Ácidos Hidroxámicos/química , Compuestos Macrocíclicos/síntesis química , Neoplasias/diagnóstico por imagen , Circonio/química , Quelantes/química , Complejos de Coordinación/química , Cristalografía por Rayos X , Ácidos Hidroxámicos/síntesis química , Ligandos , Compuestos Macrocíclicos/química , Modelos Moleculares , Estructura Molecular , Tomografía de Emisión de Positrones
11.
Org Biomol Chem ; 15(27): 5719-5730, 2017 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-28650492

RESUMEN

The water solubility of a natural product-inspired octadentate hydroxamic acid chelator designed to coordinate Zr(iv)-89 has been improved by using a combined microbiological-chemical approach to engineer four ether oxygen atoms into the main-chain region of a methylene-containing analogue. First, an analogue of the trimeric hydroxamic acid desferrioxamine B (DFOB) that contained three main-chain ether oxygen atoms (DFOB-O3) was generated from cultures of the native DFOB-producer Streptomyces pilosus supplemented with oxybis(ethanamine) (OBEA), which competed against the native 1,5-diaminopentane (DP) substrate during DFOB assembly. This precursor-directed biosynthesis (PDB) approach generated a suite of DFOB analogues containing one (DFOB-O1), two (DFOB-O2) or three (DFOB-O3) ether oxygen atoms, with the latter produced as the major species. Log P measurements showed DFOB-O3 was about 45 times more water soluble than DFOB. Second, a peptide coupling chain-extension reaction between DFOB-O3 and the synthetic ether-containing endo-hydroxamic acid monomer 4-((2-(2-aminoethoxy)ethyl)(hydroxy)amino)-4-oxobutanoic acid (PBH-O1) gave the water soluble tetrameric hydroxamic acid DFOB-O3-PBH-O1 as an isostere of sparingly water soluble DFOB-PBH. The complex between DFOB-O3-PBH-O1 and natZr(iv), examined as a surrogate measure of the radiolabelling procedure, analysed by LC-MS as the protonated adduct ([M + H]+, m/zobs = 855.2; m/zcalc = 855.3), with supporting HRMS data. The use of a microbiological system to generate a water-soluble analogue of a natural product for downstream semi-synthetic chemistry is an attractive pathway for developing new drugs and imaging agents. The improved water solubility of DFOB-O3-PBH-O1 could facilitate the synthesis and purification of downstream products, as part of the ongoing development of ligands optimised for Zr(iv)-89 immunological PET imaging.


Asunto(s)
Productos Biológicos/metabolismo , Quelantes/metabolismo , Deferoxamina/metabolismo , Streptomyces/metabolismo , Circonio/metabolismo , Productos Biológicos/química , Quelantes/química , Deferoxamina/química , Estructura Molecular , Tomografía de Emisión de Positrones , Solubilidad , Agua/química , Circonio/química
12.
Inorg Chem ; 54(7): 3573-83, 2015 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-25790062

RESUMEN

A metal-templated synthesis (MTS) approach was used to preorganize the forward endo-hydroxamic acid monomer 4-[(5-aminopentyl)(hydroxy)amino]-4-oxobutanoic acid (for-PBH) about iron(III) in a 1:3 metal/ligand ratio to furnish the iron(III) siderophore for-[Fe(DFOE)] (ferrioxamine E) following peptide coupling. Substitution of for-PBH with the reverse (retro) hydroxamic acid analogue 3-(6-amino-N-hydroxyhexanamido)propanoic acid (ret-PBH) furnished ret-[Fe(DFOE)] (ret-ferrioxamine E). As isomers, for-[Fe(DFOE)] and ret-[Fe(DFOE)] gave identical mass spectrometry signals ([M + H(+)](+), m/zcalc 654.3, m/zobs 654.3), yet for-[Fe(DFOE)] eluted in a more polar window (tR = 23.44 min) than ret-[Fe(DFOE)] (tR = 28.13 min) on a C18 reverse-phase high-performance liquid chromatography (RP-HPLC) column. for-[Ga(DFOE)] (tR = 22.99 min) and ret-[Ga(DFOE)] (tR = 28.11 min) were prepared using gallium(III) as the metal-ion template and showed the same trend for the retention time. Ring-expanded analogues of for-[Fe(DFOE)] and ret-[Fe(DFOE)] were prepared from endo-hydroxamic acid monomers with one additional methylene unit in the amine-containing region, 4-[(6-aminohexyl)(hydroxy)amino]-4-oxobutanoic acid (for-HBH) or 3-(7-amino-N-hydroxyheptanamido)propanoic acid (ret-HBH), to give the corresponding tris(homoferrioxamine E) macrocycles, for-[Fe(HHDFOE)] or ret-[Fe(HHDFOE)] ([M + H(+)](+), m/zcalc 696.3, m/zobs 696.4). The MTS reaction using a constitutional isomer of for-HBH that transposed the methylene unit to the carboxylic acid containing region, 5-[(5-aminopentyl)(hydroxy)amino]-5-oxopentanoic acid (for-PPH), gave the macrocycle for-[Fe(HPDFOE)] in a yield significantly less than that for for-[Fe(HHDFOE)], with the gallium(III) analogue for-[Ga(HPDFOE)] unable to be detected. The work demonstrates the utility and limits of MTS for the assembly of macrocyclic siderophores from endo-hydroxamic acid monomers. Indirect measures (RP-HPLC order of elution, c log P values, molecular mechanics, and density functional theory calculations) of the relative water solubility of the ligands, the iron(III) macrocycles, and the apomacrocycles were consistent in identifying for-DFOE as the most water-soluble macrocycle from for-DFOE, ret-DFOE, for-HHDFOE, ret-HHDFOE, and for-HPDFOE. From this group, only for-DFOE is known in nature, which could suggest that water solubility is an important trait in its natural selection.


Asunto(s)
Galio/química , Ácidos Hidroxámicos/química , Hierro/química , Lactamas/química , Cromatografía Liquida , Cristalografía por Rayos X , Ligandos , Espectroscopía de Resonancia Magnética , Estructura Molecular
13.
Inorg Chem ; 53(11): 5852-61, 2014 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-24834956

RESUMEN

Analysis of 1:1 solutions of V(V) and the macrocyclic dihydroxamic acid siderophore putrebactin (pbH2) in 1:1 H2O/CH3OH using triple quadrupole liquid chromatography-mass spectrometry (LC-MS-QQQ) (pH ≈ 4) showed two well-resolved peaks (tR(1) 10.85 min; tR(2) 14.27 min) using simultaneous detection modes (absorbance, 450 nm; selective ion monitoring, m/z 437) characteristic of the previously identified oxidoV(V) complex [V(V)O(pb)](+) ([M](+), m/zcalc 437.1). Peak 1 gave mass spectrometry (MS) signals consistent with [V(V)O(pb)](+), together with [V(V)O(pb)(OH)] and the dinuclear complexes [(V(V)O(pb))2(µ-OH)](+) and [(V(V)O(pb))2(µ-OH)2]. Peak 2 gave MS signals consistent with [V(V)O(pb)](+), together with [V(V)O(pb)(OCH3)] and the dinuclear complexes [(V(V)O(pb))2(µ-OCH3)](+) and [(V(V)O(pb))2(µ-OCH3)2]. This analysis showed that two groups of V(V)/pbH2 complexes with water- or methanol-derived ancillary ligands were resolved by liquid chromatography (LC). The detection of [V(V)O(pb)](+) in both peaks could be accounted for by its production from dissociation (peak 1: [(V(V)O(pb))2(µ-OH)](+) → [V(V)O(pb)](+) + [V(V)O(pb)(OH)]; peak 2: [(V(V)O(pb))2(µ-OCH3)](+) → [V(V)O(pb)](+) + [V(V)O(pb)(OCH3)]). The assignment of the signal at m/zobs 959.2 (100%) as the dinuclear complex [(V(V)O(pb))2(µ-OCH3)2] ([M + Na(+)](+), m/zcalc 959.3) and not an ion cluster of mononuclear [V(V)O(pb)(OCH3)] ({2[M] + Na(+)}(+), m/zcalc 959.3) was made unequivocal by the use of (50)V-enriched V2O5, which gave a signal with an isotope pattern comprising the sum of the patterns of the three constituent (51)V-(51)V, (51)V-(50)V, and (50)V-(50)V species. Coordination of methoxide was confirmed upon the replacement of CH3OH with CD3OD, which generated [(V(V)O(pb))2(µ-OCD3)2] ([M + Na(+)](+), m/zcalc 965.3, m/zobs 965.3). Analysis of 1:1 solutions of Mo(VI) and pbH2 showed a single peak in the LC (tR 16.04 min), which gave MS signals that were characterized as mononuclear [Mo(VI)(O)2(pb)] ([M + Na(+)](+), m/zcalc 523.1, m/zobs 523.1) and dinuclear [(Mo(VI)O(pb))2(µ-O)2] ([M + Na(+)](+), m/zcalc 1019.1, m/zobs 1019.2). The steric and electronic effects of the cis-dioxido group(s) in [Mo(VI)(O)2(pb)] mitigated coordination of solvent-derived ancillary ligands. The work highlights the value of using isotopically enriched metal ion sources and deuterated solvents to deconvolute metal/siderophore solution speciation. The results have relevance for an improved understanding of the coordination chemistry of pbH2 and other marine siderophores in V(V)- and Mo(VI)-rich surface ocean waters.


Asunto(s)
Cromatografía Liquida/métodos , Espectrometría de Masas/métodos , Compuestos de Vanadio/química , Estructura Molecular
14.
RSC Chem Biol ; 4(12): 1064-1072, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38033724

RESUMEN

Two resins with the hydroxamic acid siderophore desferrioxamine B (DFOB) immobilised as a free ligand or its Fe(iii) complex were prepared to screen the Streptomyces pilosus proteome for proteins involved in siderophore-mediated Fe(iii) uptake. The resin design included a disulfide bond to enable the release of bound proteins under mild reducing conditions. Proteomics analysis of the bound fractions did not identify proteins associated with siderophore-mediated Fe(iii) uptake, but identified nickel superoxide dismutase (NiSOD), which was enriched on the apo-DFOB-resin but not the Fe(iii)-DFOB-resin or the control resin. While DFOB is unable to sequester Fe(iii) from sites deeply buried in metalloproteins, the coordinatively unsaturated Ni(ii) ion in NiSOD is present in a surface-exposed loop region at the N-terminus, which might enable partial chelation. The results were consistent with the notion that the apo-DFOB-resin formed a ternary complex with NiSOD, which was not possible for either the coordinatively saturated Fe(iii)-DFOB-resin or the non-coordinating control resin systems. In support, ESI-TOF-MS measurements from a solution of a model Ni(ii)-SOD peptide and DFOB showed signals that correlated with a ternary Ni(ii)-SOD peptide-DFOB complex. Although any biological implications of a DFOB-NiSOD complex are unclear, the work shows that the metal coordination properties of siderophores might influence an array of metal-dependent biological processes beyond those established in iron uptake.

15.
J Proteome Res ; 11(2): 776-95, 2012 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-22054071

RESUMEN

Pseudomonas aeruginosa is an opportunistic pathogen that is the major cause of morbidity and mortality in patients with cystic fibrosis (CF). While most CF patients are thought to acquire P. aeruginosa from the environment, person-to-person transmissible strains have been identified in CF clinics worldwide, and the molecular basis for transmissibility remains poorly understood. We undertook a complementary proteomics approach to characterize protein profiles from a transmissible, acute isolate of the Australian epidemic strain 1 (AES-1R), the virulent burns/wound isolate PA14, and the poorly virulent, laboratory-associated strain PAO1 when grown in an artificial medium that mimics the CF lung environment compared to growth in standard laboratory medium. Proteins elevated in abundance in AES-1R included those involved in methionine and S-adenosylmethionine biosynthesis and in the synthesis of phenazines. Proteomic data were validated by measuring culture supernatant levels of the virulence factor pyocyanin, which is the final product of the phenazine pathway. AES-1R and PAO1 released higher extracellular levels of pyocyanin compared to PA14 when grown in conditions that mimic the CF lung. Proteins associated with biosynthesis of the iron-scavenging siderophore pyochelin (PchDEFGH and FptA) were also present at elevated abundance in AES-1R and at much higher levels than in PAO1, whereas they were reduced in PA14. These protein changes resulted phenotypically in increased extracellular iron acquisition potential and, specifically, elevated pyochelin levels in AES-1R culture supernatants as detected by chrome azurol-S assay and fluorometry, respectively. Transcript analysis of pyochelin genes (pchDFG and fptA) showed they were highly expressed during the early stage of growth in artificial sputum medium (18 h) but returned to basal levels following the establishment of microcolony growth (72 h) consistent with that observed in the CF lung. This provides further evidence that iron acquisition by pyochelin may play a role in the early stages of transmissible CF infection associated with AES-1R.


Asunto(s)
Fibrosis Quística/microbiología , Hierro/metabolismo , Fenoles/metabolismo , Pseudomonas aeruginosa/metabolismo , Tiazoles/metabolismo , Proteínas Bacterianas/análisis , Proteínas Bacterianas/metabolismo , Técnicas Bacteriológicas/métodos , Medios de Cultivo/química , Medios de Cultivo/metabolismo , Fibrosis Quística/metabolismo , Electroforesis en Gel Bidimensional , Interacciones Huésped-Patógeno , Humanos , Redes y Vías Metabólicas , Fenoles/análisis , Proteoma/análisis , Proteoma/metabolismo , Proteómica/métodos , Pseudomonas aeruginosa/crecimiento & desarrollo , Pseudomonas aeruginosa/patogenicidad , Piocianina/análisis , Piocianina/metabolismo , Esputo/microbiología , Espectrometría de Masas en Tándem , Tiazoles/análisis
16.
Bioorg Med Chem Lett ; 22(19): 6200-4, 2012 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-22932316

RESUMEN

A library of amide-linked derivatives of ß-alanine hydroxamic acid were prepared (2-7) and the activity as inhibitors of Zn(II)-containing histone deacetylases (HDACs) determined in vitro against HDAC1 and the anti-proliferative activity determined in BE(2)-C neuroblastoma cells. The IC(50) values of the best-performing compounds (3-7) against HDAC1 ranged between 38 and 84µM. The least potent compound (2) inhibited a maximum of only 40% HDAC1 activity at 250µM. The anti-proliferative activity of 2-7 at 50µM against BE(2)-C neuroblastoma cells ranged between 57.0% and 88.6%. The structural similarity between the potent HDAC inhibitor trichostatin A (TSA, 1; HDAC1, IC(50) 12nM) and the present compounds (2-7) was high at the Zn(II) coordinating hydroxamic acid head group; and in selected compounds (2, 5), at the 4-(dimethylamino)phenyl tail. The significantly reduced potency of 2-7 relative to 1 underscores the rank importance of the linker region as part of the HDAC inhibitor pharmacophore. Molecular modeling of 1-7 using HDAC8 as the template suggested that the conformationally constrained 4'-methyl group of 1 may contribute to HDAC inhibitor potency through a sandwich-like interaction with a hydrophobic region containing F152 and F208; and that the absence of this group in 2-7 may reduce potency. The close proximity of the 5'-carbonyl oxygen atom in 2-7 to the sulfur atom of Met274 in HDAC8 or the corresponding isobutyl group of Leu274 in HDAC1 may attenuate potency through repulsive steric and dipole-dipole forces. In a unique resonance stabilized form of 2, this interaction could manifest as stronger ion-dipole repulsive forces, resulting in a further decrease in potency. This work suggests that resonance structures of HDAC inhibitors could modulate intermolecular interactions with HDAC targets, and potency.


Asunto(s)
Amidas/química , Antineoplásicos/farmacología , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Ácidos Hidroxámicos/farmacología , Neuroblastoma/tratamiento farmacológico , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Células HeLa , Inhibidores de Histona Desacetilasas/síntesis química , Inhibidores de Histona Desacetilasas/química , Humanos , Ácidos Hidroxámicos/síntesis química , Ácidos Hidroxámicos/química , Modelos Moleculares , Estructura Molecular , Neuroblastoma/patología , Relación Estructura-Actividad
17.
Biochem J ; 435(3): 669-77, 2011 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-21320071

RESUMEN

Accumulating Mb (myoglobin) in the kidney following severe burns promotes oxidative damage and inflammation, which leads to acute renal failure. The potential for haem-iron to induce oxidative damage has prompted testing of iron chelators [e.g. DFOB (desferrioxamine B)] as renal protective agents. We compared the ability of DFOB and a DFOB-derivative {DFOB-AdAOH [DFOB-N-(3-hydroxyadamant-1-yl)carboxamide]} to protect renal epithelial cells from Mb insult. Loading kidney-tubule epithelial cells with dihydrorhodamine-123 before exposure to 100 µM Mb increased rhodamine-123 fluorescence relative to controls (absence of Mb), indicating increased oxidative stress. Extracellular Mb elicited a reorganization of the transferrin receptor as assessed by monitoring labelled transferrin uptake with flow cytometry and inverted fluorescence microscopy. Mb stimulated HO-1 (haem oxygenase-1), TNFα (tumour necrosis factor α), and both ICAM (intercellular adhesion molecule) and VCAM (vascular cell adhesion molecule) gene expression and inhibited epithelial monolayer permeability. Pre-treatment with DFOB or DFOB-AdAOH decreased Mb-mediated rhodamine-123 fluorescence, HO-1, ICAM and TNFα gene expression and restored monolayer permeability. MCP-1 (monocyte chemotactic protein 1) secretion increased in cells exposed to Mb-insult and this was abrogated by DFOB or DFOB-AdAOH. Cells treated with DFOB or DFOB-AdAOH alone showed no change in permeability, MCP-1 secretion or HO-1, TNFα, ICAM or VCAM gene expression. Similarly to DFOB, incubation of DFOB-AdAOH with Mb plus H2O2 yielded nitroxide radicals as detected by EPR spectroscopy, indicating a potential antioxidant activity in addition to metal chelation; Fe(III)-loaded DFOB-AdAOH showed no nitroxide radical formation. Overall, the chelators inhibited Mb-induced oxidative stress and inflammation and improved epithelial cell function. DFOB-AdAOH showed similar activity to DFOB, indicating that this novel low-toxicity chelator may protect the kidney after severe burns.


Asunto(s)
Quelantes/farmacología , Deferoxamina/análogos & derivados , Deferoxamina/farmacología , Células Epiteliales/efectos de los fármacos , Túbulos Renales/citología , Mioglobinuria/tratamiento farmacológico , Animales , Línea Celular , Perros , Endocitosis , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/fisiología , Estructura Molecular , Mioglobina/toxicidad
18.
Chem Biodivers ; 9(9): 1880-90, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22976977

RESUMEN

To manage iron acquisition in an oxic environment, Shewanella putrefaciens produces the macrocyclic dihydroxamic acid putrebactin (PB) as its native siderophore. In this work, we have established the siderophore profile of S. putrefaciens in cultures augmented with the native PB precursor putrescine and in putrescine-depleted cultures. Compared to base medium, PB increased by two-fold in cultures of S. putrefaciens with 10 mM NaCl and 20 mM exogenous putrescine. In cultures augmented with 1,4-diaminobutan-2-one (DAB), PB decreased with only 0.02-fold PB detectable at 10 mM DAB. As an ornithine decarboxylase (ODC) inhibitor, DAB depleted levels of endogenous putrescine which attenuated downstream PB assembly. Under putrescine-depleted conditions, S. putrefaciens produced as its replacement siderophore the cadaverine-based desferrioxamine B (DFO-B), as characterised by ESI-MS of the Fe(III)-loaded form (m/z(obs) 614.13; m/z(calc) 614.27). A third siderophore, independent of DAB, was observed in low levels. LC/MS Analysis of the Fe(III)-loaded extract gave m/z(obs) 440.93, which, formulated as a 1:1 Fe(III) complex with a macrocyclic dihydroxamic acid, comprising one putrescine- and one cadaverine-based precursor (m/z(calc) 440.14). These results show that the production of native PB or non-native DFO-B by S. putrefaciens can be directed though upstream inhibition of ODC. This approach could be used to increase the molecular diversity of siderophores produced by S. putrefaciens and to map alternative diamine-dependent metabolites.


Asunto(s)
Deferoxamina/metabolismo , Inhibidores de la Ornitina Descarboxilasa , Putrescina/análogos & derivados , Shewanella putrefaciens/metabolismo , Deferoxamina/farmacología , Inhibidores Enzimáticos/farmacología , Estructura Molecular , Putrescina/biosíntesis , Putrescina/metabolismo , Putrescina/farmacología , Shewanella putrefaciens/efectos de los fármacos , Shewanella putrefaciens/enzimología , Sideróforos/biosíntesis , Sideróforos/metabolismo , Espectrometría de Masa por Ionización de Electrospray , Succinatos/metabolismo
19.
Methods Enzymol ; 665: 49-71, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35379443

RESUMEN

Converting discrete microbial metabolites into chemical probes for chemical biology and medicinal chemistry studies is typically preceded by lengthy purification and chemical derivatization processes. Standard practice involves purifying the target microbial metabolite from culture, followed by derivatization and/or conjugation chemistry to convert the pure metabolite into a tagged species. This multistep approach can pose difficulties in generating useful yields of chemical probes, particularly in the case of low-abundant metabolites, as common in metabolomes. This chapter describes a methodological approach to simplify the steps towards generating chemical probes from complex mixtures, that combines: (a) tailored purification processes; (b) compound identification using state-of-the-art tandem mass spectrometry and data-dependent fragmentation; and (c) in situ bioorthogonal bioconjugation chemistries. The combination of these methods, as illustrated by the conversion of a set of amine-bearing metabolites to the cognate azide analogs suitable for biotinylation through azide-alkyne cycloaddition, describes a powerful approach to access new chemical probes of low-abundant metabolites that might otherwise be inaccessible using traditional methods.


Asunto(s)
Azidas , Química Clic , Alquinos/química , Azidas/química , Química Clic/métodos , Reacción de Cicloadición , Indicadores y Reactivos
20.
ACS Chem Biol ; 17(2): 426-437, 2022 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-35015506

RESUMEN

Biosynthesis of the hydroxamic acid siderophore desferrioxamine D1 (DFOD1, 6), which is the N-acetylated analogue of desferrioxamine B (DFOB, 5), has been delineated. Enzyme-independent Ac-CoA-mediated N-acetylation of 5 produced 6, in addition to three constitutional isomers containing an N-O-acetyl group installed at either one of the three hydroxamic acid groups of 5. The formation of N-Ac-DFOB (DFOD1, 6) and the composite of N-O-acetylated isomers N-O-Ac-DFOB[001] (6a), N-O-Ac-DFOB[010] (6b), and N-O-Ac-DFOB[100] (6c) (defined as the N-O-Ac motif positioned within the terminal amine, internal, or N-acetylated region of 5, respectively), was pH-dependent, with 6a-6c dominant at pH < 8.5 and 6 dominant at pH > 8.5. The trend in the pH dependence was consistent with the pKa values of the NH3+ (pKa ∼ 10) and N-OH (pKa ∼ 8.5-9) groups in 5. The N- and N-O-acetyl motifs can be conceived as a post-biosynthetic modification (PBM) of a nonproteinaceous secondary metabolite, akin to a post-translational modification (PTM) of a protein. The pH-labile N-O-acetyl group could act as a reversible switch to modulate the properties and functions of secondary metabolites, including hydroxamic acid siderophores. An alternative (most likely minor) biosynthetic pathway for 6 showed that the nonribosomal peptide synthetase-independent siderophore synthetase DesD was competent in condensing N'-acetyl-N-succinyl-N-hydroxy-1,5-diaminopentane (N'-Ac-SHDP, 7) with the dimeric hydroxamic acid precursor (AHDP-SHDP, 4) native to 5 biosynthesis to generate 6. The strategy of diversifying protein structure and function using PTMs could be paralleled in secondary metabolites with the use of PBMs.


Asunto(s)
Deferoxamina , Sideróforos , Acetilcoenzima A/metabolismo , Vías Biosintéticas , Deferoxamina/metabolismo , Concentración de Iones de Hidrógeno , Sideróforos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA