Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Revista
País de afiliación
Intervalo de año de publicación
1.
EMBO J ; 41(24): e110959, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36314723

RESUMEN

One-third of the human proteome is comprised of membrane proteins, which are particularly vulnerable to misfolding and often require folding assistance by molecular chaperones. Calnexin (CNX), which engages client proteins via its sugar-binding lectin domain, is one of the most abundant ER chaperones, and plays an important role in membrane protein biogenesis. Based on mass spectrometric analyses, we here show that calnexin interacts with a large number of nonglycosylated membrane proteins, indicative of additional nonlectin binding modes. We find that calnexin preferentially bind misfolded membrane proteins and that it uses its single transmembrane domain (TMD) for client recognition. Combining experimental and computational approaches, we systematically dissect signatures for intramembrane client recognition by calnexin, and identify sequence motifs within the calnexin TMD region that mediate client binding. Building on this, we show that intramembrane client binding potentiates the chaperone functions of calnexin. Together, these data reveal a widespread role of calnexin client recognition in the lipid bilayer, which synergizes with its established lectin-based substrate binding. Molecular chaperones thus can combine different interaction modes to support the biogenesis of the diverse eukaryotic membrane proteome.


Asunto(s)
Chaperonas Moleculares , Proteoma , Humanos , Calnexina/metabolismo , Proteoma/metabolismo , Chaperonas Moleculares/metabolismo , Lectinas/metabolismo , Proteínas de la Membrana/metabolismo , Pliegue de Proteína , Proteínas de Unión al Calcio/metabolismo
2.
EMBO J ; 39(10): e104880, 2020 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-32239769

RESUMEN

Eukaryotic cells have evolved multiple responses that allow endoplasmic reticulum (ER) homeostasis to be maintained even in the face of acute or chronic stresses. In this issue, Yu et al (2020) describe how site-specific phosphorylation switches protein disulfide isomerase (PDI) from a folding enzyme to a holdase chaperone which regulates ER stress responses, thus highlighting PDI as a key player in ER homeostasis.


Asunto(s)
Oxidorreductasas , Proteína Disulfuro Isomerasas , Retículo Endoplásmico/metabolismo , Oxidorreductasas/metabolismo , Fosforilación , Proteína Disulfuro Isomerasas/metabolismo , Proteostasis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA