Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
AIDS Res Ther ; 12: 39, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26628902

RESUMEN

BACKGROUND: An increasing number of patients in Africa are experiencing virologic failure on second-line antiretroviral therapy (ART) and those who develop resistance to protease inhibitors (PI) will require third-line ART, but no data on the outcomes of third-line are available from the region. We assessed the virologic outcomes and survival of patients started on salvage ART in a Southern African private sector disease management programme. METHODS: Retrospective observational cohort study with linkage to the national death register. Adults (≥18 years) who started salvage ART between July 2007 and December 2011 were included. Salvage ART was defined by inclusion of darunavir or tipranavir in an ART regimen after having failed another PI. For Kaplan-Meier (KM) analysis, patients were followed up until event, or censored at death (only for virologic outcomes), leaving the programme, or April 2014. RESULTS: 152 patients were included. Subtype was known for 113 patients: 111 (98 %) were infected with subtype C. All 152 had a genotype resistance test demonstrating major PI resistance mutations. Salvage drugs included were: darunavir/ritonavir (n = 149), tipranavir/ritonavir (n = 3), raltegravir (n = 58), and etravirine (n = 8). Median follow-up was 2.5 years (IQR = 1.5-3.3). 82.9 % achieved a viral load ≤400 copies/ml and 71.1 % ≤50 copies/ml. By the end of the study 17 (11.2 %) of the patients had died. The KM estimate of cumulative survival was 87.2 % at 2000 days. CONCLUSIONS: Virologic suppression was comparable to that demonstrated in clinical trials and observational studies of salvage ART drugs conducted in other regions. Few deaths occurred during short term follow-up. Third-line regimens for patients with multidrug resistant subtype C HIV in Africa are virologically and clinically effective.

2.
Mol Endocrinol ; 22(11): 2520-30, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18801931

RESUMEN

GnRH acts on its cognate receptor in pituitary gonadotropes to regulate the biosynthesis and secretion of gonadotropins. It may also have direct extrapituitary actions, including inhibition of cell growth in reproductive malignancies, in which GnRH activation of the MAPK cascades is thought to play a pivotal role. In extrapituitary tissues, GnRH receptor signaling has been postulated to involve coupling of the receptor to different G proteins. We examined the ability of the GnRH receptor to couple directly to Galpha(q/11), Galpha(i/o), and Galpha(s), their roles in the activation of the MAPK cascades, and the subsequent cellular effects. We show that in Galpha(q/11)-negative cells stably expressing the GnRH receptor, GnRH did not induce activation of ERK, jun-N-terminal kinase, or P38 MAPK. In contrast to Galpha(i) or chimeric Galpha(qi5), transfection of Galpha(q) cDNA enabled GnRH to induce phosphorylation of ERK, jun-N-terminal kinase, and P38. Furthermore, no GnRH-mediated cAMP response or inhibition of isoproterenol-induced cAMP accumulation was observed. In another cellular background, [35S]GTPgammaS binding assays confirmed that the GnRH receptor was unable to directly couple to Galpha(i) but could directly interact with Galpha(q/11). Interestingly, GnRH stimulated a marked reduction in cell growth only in cells expressing Galpha(q), and this inhibition could be significantly rescued by blocking ERK activation. We therefore provide direct evidence, in multiple cellular backgrounds, that coupling of the GnRH receptor to Galpha(q/11), but not to Galpha(i/o) or Galpha(s), and consequent activation of ERK plays a crucial role in GnRH-mediated cell death.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Receptores LHRH/metabolismo , Animales , Línea Celular , Proliferación Celular , AMP Cíclico/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/deficiencia , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/genética , Sistema de Señalización de MAP Quinasas , Ratones , Ratones Noqueados , Fosforilación , Receptores LHRH/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transfección
3.
J Acquir Immune Defic Syndr ; 80(3): 325-329, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30531296

RESUMEN

BACKGROUND: Most adults with virological failure on second-line antiretroviral therapy (ART) in resource-limited settings have no major protease inhibitor (PI) resistance mutations. Therefore, empiric switches to third-line ART would waste resources. Genotypic antiretroviral resistance testing (GART) is expensive and has limited availability. A clinical prediction rule (CPR) for PI resistance could rationalize access to GART. SETTING: A private sector ART cohort, South Africa. METHODS: We identified adults with virologic failure on ritonavir-boosted lopinavir/atazanavir-based ART and GART. We constructed a multivariate logistic regression model including age, sex, PI duration, short-term adherence (using pharmacy claims), concomitant CYP3A4-inducing drugs, and viral load at time of GART. We selected variables for the CPR using a stepwise approach and internally validated the model by bootstrapping. RESULTS: 148/339 (44%) patients had PI resistance (defined as ≥ 1 major resistance mutation to current PI). The median age was 42 years (interquartile range 36-48), 212 (63%) were females, 308 (91%) were on lopinavir/ritonavir, and median PI duration was 2.6 years (interquartile range 1.6-4.7). Variables associated with PI resistance and included in the CPR were age {adjusted odds ratio (aOR) 1.96 (95% confidence interval [CI]: 1.42 to 2.70) for 10-year increase}, PI duration (aOR 1.14 [95% CI: 1.03 to 1.26] per year), and adherence (aOR 1.22 [95% CI: 1.12 to 1.33] per 10% increase). The CPR model had a c-statistic of 0.738 (95% CI: 0.686 to 0.791). CONCLUSIONS: Older patients with high adherence and prolonged PI exposure are most likely to benefit from GART to guide selection of a third-line ART regimen. Our CPR to select patients for GART requires external validation before implementation.


Asunto(s)
Sulfato de Atazanavir/farmacología , Farmacorresistencia Viral , Infecciones por VIH/tratamiento farmacológico , Inhibidores de la Proteasa del VIH/farmacología , VIH-1/efectos de los fármacos , Lopinavir/farmacología , Adulto , Femenino , Infecciones por VIH/virología , VIH-1/genética , Humanos , Modelos Logísticos , Masculino , Persona de Mediana Edad , Análisis Multivariante , Mutación
4.
Biochemistry ; 47(39): 10305-13, 2008 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-18771291

RESUMEN

Molecular modeling showed interactions of Tyr (290(6.58)) in transmembrane domain 6 of the GnRH receptor with Tyr (5) of GnRH I, and His (5) of GnRH II. The wild-type receptor exhibited high affinity for [Phe (5)]GnRH I and [Tyr (5)]GnRH II, but 127- and 177-fold decreased affinity for [Ala (5)]GnRH I and [Ala (5)]GnRH II, indicating that the aromatic ring in position 5 is crucial for receptor binding. The receptor mutation Y290F decreased affinity for GnRH I, [Phe (5)]GnRH I, GnRH II and [Tyr (5)]GnRH II, while Y290A and Y290L caused larger decreases, suggesting that both the para-OH and aromatic ring of Tyr (290(6.58)) are important for binding of ligands with aromatic residues in position 5. Mutating Tyr (290(6.58)) to Gln increased affinity for Tyr (5)-containing GnRH analogues 3-12-fold compared with the Y290A and Y290L mutants, suggesting a hydrogen-bond between Gln of the Y290Q mutant and Tyr (5) of GnRH analogues. All mutations had small effects on affinity of GnRH analogues that lack an aromatic residue in position 5. These results support direct interactions of the Tyr (290(6.58)) side chain with Tyr (5) of GnRH I and His (5) of GnRH II. Tyr (290(6.58)) mutations, except for Y290F, caused larger decreases in GnRH potency than affinity, indicating that an aromatic ring is important for the agonist-induced receptor conformational switch.


Asunto(s)
Hormona Liberadora de Gonadotropina/metabolismo , Histidina , Receptores LHRH/química , Receptores LHRH/metabolismo , Tirosina , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Sitios de Unión , Unión Competitiva , Humanos , Cinética , Ligandos , Modelos Moleculares , Fragmentos de Péptidos/química , Conformación Proteica
5.
Endocrinology ; 148(10): 5060-71, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17595228

RESUMEN

Multiple GnRH receptors are known to exist in nonmammalian species, but it is uncertain which receptor type regulates reproduction via the hypothalamic-pituitary-gonadal axis. The teleost fish, Astatotilapia burtoni, is useful for identifying the GnRH receptor responsible for reproduction, because only territorial males reproduce. We have cloned a second GnRH receptor in A. burtoni, GnRH-R1(SHS) (SHS is a peptide motif in extracellular loop 3), which is up-regulated in pituitaries of territorial males. We have shown that GnRH-R1(SHS) is expressed in many tissues and specifically colocalizes with LH in the pituitary. In A. burtoni brain, mRNA levels of both GnRH-R1(SHS) and a previously identified receptor, GnRH-R2(PEY), are highly correlated with mRNA levels of all three GnRH ligands. Despite its likely role in reproduction, we found that GnRH-R1(SHS) has the highest affinity for GnRH2 in vitro and low responsivity to GnRH1. Our phylogenetic analysis shows that GnRH-R1(SHS) is less closely related to mammalian reproductive GnRH receptors than GnRH-R2(PEY). We correlated vertebrate GnRH receptor amino acid sequences with receptor function and tissue distribution in many species and found that GnRH receptor sequences predict ligand responsiveness but not colocalization with pituitary gonadotropes. Based on sequence analysis, tissue localization, and physiological response we propose that the GnRH-R1(SHS) receptor controls reproduction in teleosts, including A. burtoni. We propose a GnRH receptor classification based on gene sequence that correlates with ligand selectivity but not with reproductive control. Our results suggest that different duplicated GnRH receptor genes have been selected to regulate reproduction in different vertebrate lineages.


Asunto(s)
Cíclidos/metabolismo , Evolución Molecular , Receptores LHRH/química , Receptores LHRH/metabolismo , Receptores LHRH/fisiología , Secuencia de Aminoácidos , Animales , Unión Competitiva , Encéfalo/metabolismo , Ritmo Circadiano , Clonación Molecular , Femenino , Hormona Liberadora de Gonadotropina/metabolismo , Ligandos , Masculino , Filogenia , ARN Mensajero/metabolismo , Receptores LHRH/genética , Reproducción/fisiología , Distribución Tisular
6.
AIDS Res Hum Retroviruses ; 24(12): 1527-36, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19018669

RESUMEN

HIV-1 subtype C is the fastest spreading subtype worldwide and predominantly uses the CCR5 coreceptor, showing minimal transition to the X4 phenotype. This raises the possibility that envelope proteins of HIV-1 subtype C have structural features that favor interaction with CCR5. Preference for CCR5 could arise from enhanced affinity of HIV-1 subtype C for CCR5. To test this, we have characterized the interaction of gp120 envelope proteins from HIV-1 subtype C clones with CD4 and CCR5. Recombinant gp120 proteins from isolates of HIV-1 subtypes B and C were expressed, purified, and assessed in a CD4 binding assay and a CCR5 chemokine competition binding assay. All gp120 proteins bound to CD4-expressing cells, except one, 97ZA347ts, which had Arg substituted for the Cys239 in the conserved C2 loop. Reconstitution of Cys239, using site-directed mutagenesis, restored CD4 binding, while introducing Arg or Ser into position 239 of the functional Du151 gp120 protein abrogated CD4 binding. This shows that the Cys228-Cys239 disulfide bond of gp120 is required for high-affinity binding to CD4. Recombinant gp120 proteins from two HIV-1 subtype B clones bound CCR5 in the presence of CD4, while gp120 from the X4-tropic, HxB2, clone did not bind CCR5. gp120 from two functional HIV-1 subtype C clones, Du151 and MOLE1, bound CCR5 with high affinity in the presence of CD4 and Du151 showed significant CCR5 binding in the absence of CD4. A gp120 from a nonfunctional subtype C clone had lower affinity for CCR5. These results indicate that HIV-1 subtype C proteins have high affinity for CCR5 with variable dependence on CD4.


Asunto(s)
Síndrome de Inmunodeficiencia Adquirida/virología , Proteína gp120 de Envoltorio del VIH/metabolismo , VIH-1/aislamiento & purificación , VIH-1/fisiología , Receptores CCR5/metabolismo , África Austral , Sustitución de Aminoácidos/genética , Antígenos CD4/metabolismo , Humanos , Mutagénesis Sitio-Dirigida , Mutación Missense , Unión Proteica
7.
J Biol Chem ; 282(24): 17921-9, 2007 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-17452338

RESUMEN

G protein coupled receptors (GPCRs) modulate the majority of physiological processes through specific intermolecular interactions with structurally diverse ligands and activation of differential intracellular signaling. A key issue yet to be resolved is how GPCRs developed selectivity and diversity of ligand binding and intracellular signaling during evolution. We have explored the structural basis of selectivity of naturally occurring gonadotropin-releasing hormones (GnRHs) from different species in the single functional human GnRH receptor. We found that the highly variable amino acids in position 8 of the naturally occurring isoforms of GnRH play a discriminating role in selecting receptor conformational states. The human GnRH receptor has a higher affinity for the cognate GnRH I but a lower affinity for GnRH II and GnRHs from other species possessing substitutions for Arg(8). The latter were partial agonists in the human GnRH receptor. Mutation of Asn(7.45) in transmembrane domain (TM) 7 had no effect on GnRH I affinity but specifically increased affinity for other GnRHs and converted them to full agonists. Using molecular modeling and site-directed mutagenesis, we demonstrated that the highly conserved Asn(7.45) makes intramolecular interactions with a highly conserved Cys(6.47) in TM 6, suggesting that disruption of this intramolecular interaction induces a receptor conformational change which allosterically alters ligand specific binding sites and changes ligand selectivity and signaling efficacy. These results reveal GnRH ligand and receptor structural elements for conformational selection, and support co-evolution of GnRH ligand and receptor conformations.


Asunto(s)
Hormona Liberadora de Gonadotropina/química , Estructura Terciaria de Proteína , Receptores Acoplados a Proteínas G/química , Receptores LHRH/química , Alanina/metabolismo , Animales , Asparagina/metabolismo , Hormona Liberadora de Gonadotropina/metabolismo , Humanos , Ligandos , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores LHRH/genética , Receptores LHRH/metabolismo
8.
J Biol Chem ; 280(33): 29796-803, 2005 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-15967801

RESUMEN

The human gonadotropin-releasing hormone (GnRH) receptor is evolutionarily configured for high affinity binding of GnRH I ([Tyr(5),Leu(7),Arg(8)]GnRH) but at lower affinity for GnRH II ([His(5),Trp(7),Tyr(8)]GnRH). GnRH I is more potent in the activation of the G(q/11) protein in the gonadotrope; however, GnRH II is more potent in the stimulation of apoptosis and antiproliferative effects through activating G(i) protein-mediated signaling, implying that GnRH I and II selectively stabilize different receptor-active conformations that preferentially couple to different signaling pathways. Receptor activation involves ligand induction or conformational selection, but the molecular basis of the communication between ligand-binding sites and receptor allosteric sites remains unclear. We have sought conformational coupling between receptor-ligand intermolecular interactions and intramolecular interaction networks in the human GnRH receptor by mutating remote residues that induce differential ligand binding affinity shifts for GnRH I and II. We have demonstrated that certain Ala mutations in the intracellular segments of transmembrane domains 3 (Met(132)), 5 (Met(227)), 6 (Phe(272) and Phe(276)), and 7 (Ile(322) and Tyr(323)) of the human GnRH receptor allosterically increased ligand binding affinity for GnRH II but had little effect on GnRH I binding affinity. We examined the role of the three amino acids that differ in these two ligands, and we found that Tyr(8) in GnRH II plays a dominant role for the increased affinity of the receptor mutants for GnRH II. We propose that creation of a high affinity binding site for GnRH II accompanies receptor conformational changes, i.e."induced fit" or "conformational selection," mainly determined by the intermolecular interactions between Tyr(8) and the receptor contact residues, which can be facilitated by disruption of particular sets of receptor-stabilizing intramolecular interactions. The findings suggest that GnRH I and II binding may selectively stabilize different receptor-active conformations and therefore different ligand-induced selective signaling described previously for these ligands.


Asunto(s)
Hormona Liberadora de Gonadotropina/metabolismo , Receptores LHRH/química , Animales , Sitios de Unión , Células COS , Humanos , Ligandos , Mutagénesis Sitio-Dirigida , Conformación Proteica , Receptores LHRH/metabolismo , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA