Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 106(16): 6519-24, 2009 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-19366668

RESUMEN

Large (>100 microm), profusely ornamented microfossils comprise a distinctive paleontological component of sedimentary rocks deposited during the Ediacaran Period (635-542 million years ago). Smaller spinose fossils in Paleozoic rocks have commonly been interpreted as algal cysts or phycomata, but the Ediacaran populations differ from modern algal analogs in size, shape, ultrastructure, and internal contents. In contrast, cysts formed during the diapause egg-resting stages of many metazoans share features of size, ornamentation, and internal contents with large ornamented Ediacaran microfossils (LOEMs). Moreover, transmission electron microscopic observations of animal-resting cysts reveal a 3-layer wall ultrastructure comparable to that of LOEM taxa. Interpretation of these distinctive Ediacaran microfossils as resting stages in early metazoan life cycles offers additional perspectives on their functional morphology and stratigraphic distribution. Based on comparisons with modern marine invertebrates, the recalcitrant life stage represented by LOEMs is interpreted as an evolutionary response to prolonged episodes of bottom water anoxia in Ediacaran shelf and platform environments. As predicted by this hypothesis, the later Ediacaran disappearance of LOEM taxa coincides with geochemical evidence for a marked decline in the extent of oxygen-depleted waters impinging on continental shelves and platforms. Thus, the form, diversity, and stratigraphic range of LOEMs illuminate life cycle evolution in early animals as influenced by the evolving redox state of the oceans.


Asunto(s)
Evolución Biológica , Fósiles , Sedimentos Geológicos , Descanso , Animales , Crustáceos/ultraestructura , Eucariontes/ultraestructura , Océanos y Mares
2.
Trends Ecol Evol ; 37(3): 246-256, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34949483

RESUMEN

While there is significant data on eukaryogenesis and the early development of the eukaryotic lineage, major uncertainties regarding their origins and evolution remain, including questions of taxonomy, timing, and paleoecology. Here we examine the origin and diversification of the eukaryotes in the Proterozoic Eon as viewed through fossils, organic biomarkers, molecular clocks, phylogenies, and redox proxies. Our interpretation of the integration of these data suggest that eukaryotes were likely aerobic and established in Proterozoic ecosystems. We argue that we must closely examine and integrate both biological and geological evidence and examine points of agreement and contention to gain new insights into the true origin and early evolutionary history of this vastly important group.


Asunto(s)
Ecosistema , Eucariontes , Evolución Biológica , Eucariontes/genética , Células Eucariotas , Fósiles , Geología , Filogenia
3.
Geobiology ; 20(3): 346-362, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34904359

RESUMEN

We apply a new approach for the δ13 C analysis of single organic-walled microfossils (OWM) to three sites in the Appalachian Basin of New York (AB) that span the Late Devonian Biotic Crisis (LDBC). Our data provide new insights into the nature of the Frasnian-Famennian carbon cycle in the AB and also provide possible constraints on the paleoecology of enigmatic OWM ubiquitous in Paleozoic shale successions. The carbon isotope compositions of OWM are consistent with normal marine organic matter of autochthonous origins and range from -32 to -17‰, but average -25‰ across all samples and are consistently 13 C-enriched compared to bulk sediments (δ13 Cbulk ) by ~0-10‰. We observe no difference between the δ13 COWM of leiospheres (smooth-walled) and acanthomorphic (spinose) acritarch OWM, indicating that our data are driven by ecological rather than taxonomic signals. We hypothesize that the offset between δ13 COWM and δ13 Cbulk is in part due to a large δ13 C gradient in the AB water column where OWM utilized relatively 13 C-enriched dissolved inorganic carbon near the surface. Thus, the organisms producing the balance of the total organic carbon were assimilating 13 C-depleted C sources, including but not limited to respired organic carbon or byproducts of fermentation. We also observe a systematic decrease in both δ13 COWM and δ13 Cbulk of 3‰ from shoreward to open-ocean facies that may reflect the effect of 13 C-enriched dissolved inorganic carbon (DIC) derived from riverine sources in the relatively enclosed AB. The hypothesized steep carbon isotope gradient in the AB could be due to a strong biological pump; this in turn may have contributed to low oxygen bottom water conditions during the LDBC. This is the first time single-microfossil δ13 Corg analyses of eukaryotes have been directly compared to bulk δ13 Corg in the deep-time fossil record.


Asunto(s)
Ciclo del Carbono , Sedimentos Geológicos , Carbono/análisis , Isótopos de Carbono/análisis , Agua
4.
Emerg Top Life Sci ; 2(2): 173-180, 2018 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-32412620

RESUMEN

Predation, and how organisms respond to it, is an important ecological interaction across the tree of life. Much of our understanding of predation focuses on modern metazoa. However, predation is equally important in single-celled eukaryotes (commonly referred to as protists). In the fossil record, we see evidence of protists preying on other protists beginning in the Tonian Period (1000-720 Ma). In addition, the first evidence of eukaryotic biomineralization and the appearance of multiple unmineralized but recalcitrant forms are also seen in the Tonian and Cryogenian (720-635 Ma), potentially indirect evidence of predation. This fossil evidence, coupled with molecular clock analyses, is coincident with multiple metrics that show an increase in the diversity of eukaryotic clades and fossil assemblages. Predation, thus, may have played a critical role in the diversification of eukaryotes and the evolution of protistan armor in the Neoproterozoic Era. Here, we review the current understanding of predation in the Tonian and Cryogenian oceans as viewed through the fossil record, and discuss how the rise of eukaryotic predation upon other eukaryotes (eukaryovory) may have played a role in major evolutionary transitions including the origins of biomineralization.

5.
Sci Adv ; 3(6): e1700095, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28782008

RESUMEN

Biomineralization marks one of the most significant evolutionary milestones among the Eukarya, but its roots in the fossil record remain obscure. We report crystallographic and geochemical evidence for controlled eukaryotic biomineralization in Neoproterozoic scale microfossils from the Fifteenmile Group of Yukon, Canada. High-resolution transmission electron microscopy reveals that the microfossils are constructed of a hierarchically organized interwoven network of fibrous hydroxyapatite crystals each elongated along the [001] direction, indicating biological control over microstructural crystallization. New Re-Os geochronological data from organic-rich shale directly below the fossil-bearing limestone constrain their age to <810.7 ± 6.3 million years ago. Mineralogical and geochemical variations from these sedimentary rocks indicate that dynamic global marine redox conditions, enhanced by local restriction, may have led to an increase in dissolved phosphate in pore and bottom waters of the Fifteenmile basin and facilitated the necessary geochemical conditions for the advent of calcium phosphate biomineralization.


Asunto(s)
Biomineralización , Calcificación Fisiológica , Durapatita/metabolismo , Eucariontes/metabolismo , Eucariontes/ultraestructura , Fósiles , Sedimentos Geológicos , Difracción de Rayos X
6.
Sci Adv ; 3(11): e1600983, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-29134193

RESUMEN

Geological evidence indicates that grounded ice sheets reached sea level at all latitudes during two long-lived Cryogenian (58 and ≥5 My) glaciations. Combined uranium-lead and rhenium-osmium dating suggests that the older (Sturtian) glacial onset and both terminations were globally synchronous. Geochemical data imply that CO2 was 102 PAL (present atmospheric level) at the younger termination, consistent with a global ice cover. Sturtian glaciation followed breakup of a tropical supercontinent, and its onset coincided with the equatorial emplacement of a large igneous province. Modeling shows that the small thermal inertia of a globally frozen surface reverses the annual mean tropical atmospheric circulation, producing an equatorial desert and net snow and frost accumulation elsewhere. Oceanic ice thickens, forming a sea glacier that flows gravitationally toward the equator, sustained by the hydrologic cycle and by basal freezing and melting. Tropical ice sheets flow faster as CO2 rises but lose mass and become sensitive to orbital changes. Equatorial dust accumulation engenders supraglacial oligotrophic meltwater ecosystems, favorable for cyanobacteria and certain eukaryotes. Meltwater flushing through cracks enables organic burial and submarine deposition of airborne volcanic ash. The subglacial ocean is turbulent and well mixed, in response to geothermal heating and heat loss through the ice cover, increasing with latitude. Terminal carbonate deposits, unique to Cryogenian glaciations, are products of intense weathering and ocean stratification. Whole-ocean warming and collapsing peripheral bulges allow marine coastal flooding to continue long after ice-sheet disappearance. The evolutionary legacy of Snowball Earth is perceptible in fossils and living organisms.


Asunto(s)
Clima , Animales , Dióxido de Carbono/química , Dióxido de Carbono/metabolismo , Planeta Tierra , Cubierta de Hielo/química , Datación Radiométrica
8.
Science ; 327(5970): 1241-3, 2010 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-20203045

RESUMEN

The Neoproterozoic was an era of great environmental and biological change, but a paucity of direct and precise age constraints on strata from this time has prevented the complete integration of these records. We present four high-precision U-Pb ages for Neoproterozoic rocks in northwestern Canada that constrain large perturbations in the carbon cycle, a major diversification and depletion in the microfossil record, and the onset of the Sturtian glaciation. A volcanic tuff interbedded with Sturtian glacial deposits, dated at 716.5 million years ago, is synchronous with the age of the Franklin large igneous province and paleomagnetic poles that pin Laurentia to an equatorial position. Ice was therefore grounded below sea level at very low paleolatitudes, which implies that the Sturtian glaciation was global in extent.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA