Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Brain Behav Immun ; 115: 631-651, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37967664

RESUMEN

Neuronanomedicine is an emerging multidisciplinary field that aims to create innovative nanotechnologies to treat major neurodegenerative disorders, such as Alzheimer's (AD) and Parkinson's disease (PD). A key component of neuronanomedicine are nanoparticles, which can improve drug properties and demonstrate enhanced safety and delivery across the blood-brain barrier, a major improvement on existing therapeutic approaches. In this review, we critically analyze the latest nanoparticle-based strategies to modify underlying disease pathology to slow or halt AD/PD progression. We find that a major roadblock for neuronanomedicine translation to date is a poor understanding of how nanoparticles interact with biological systems (i.e., bio-nano interactions), which is partly due to inconsistent reporting in published works. Accordingly, this review makes a set of specific recommendations to help guide researchers to harness the unique properties of nanoparticles and thus realise breakthrough treatments for AD/PD.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/patología , Sistemas de Liberación de Medicamentos , Enfermedad de Alzheimer/patología , Barrera Hematoencefálica/patología
2.
Brain Behav Immun ; 119: 554-571, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38663775

RESUMEN

Age is the number one risk factor for developing a neurodegenerative disease (ND), such as Alzheimer's disease (AD) or Parkinson's disease (PD). With our rapidly ageing world population, there will be an increased burden of ND and need for disease-modifying treatments. Currently, however, translation of research from bench to bedside in NDs is poor. This may be due, at least in part, to the failure to account for the potential effect of ageing in preclinical modelling of NDs. While ageing can impact upon physiological response in multiple ways, only a limited number of preclinical studies of ND have incorporated ageing as a factor of interest. Here, we evaluate the aged phenotype and highlight the critical, but unmet, need to incorporate aspects of this phenotype into both the in vitro and in vivo models used in ND research. Given technological advances in the field over the past several years, we discuss how these could be harnessed to create novel models of ND that more readily incorporate aspects of the aged phenotype. This includes a recently described in vitro panel of ageing markers, which could help lead to more standardised models and improve reproducibility across studies. Importantly, we cannot assume that young cells or animals yield the same responses as seen in the context of ageing; thus, an improved understanding of the biology of ageing, and how to appropriately incorporate this into the modelling of ND, will ensure the best chance for successful translation of new therapies to the aged patient.


Asunto(s)
Envejecimiento , Modelos Animales de Enfermedad , Enfermedades Neurodegenerativas , Fenotipo , Humanos , Envejecimiento/fisiología , Animales , Enfermedad de Alzheimer/metabolismo , Enfermedad de Parkinson/fisiopatología
3.
J Neurochem ; 167(6): 733-752, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38010732

RESUMEN

We have previously demonstrated that a cortical stroke causes persistent impairment of hippocampal-dependent cognitive tasks concomitant with secondary neurodegenerative processes such as amyloid-ß accumulation in the hippocampus, a region remote from the primary infarct. Interestingly, there is emerging evidence suggesting that deposition of amyloid-ß around cerebral vessels may lead to cerebrovascular structural changes, neurovascular dysfunction, and disruption of blood-brain barrier integrity. However, there is limited knowledge about the temporal changes of hippocampal cerebrovasculature after cortical stroke. In the current study, we aimed to characterise the spatiotemporal cerebrovascular changes after cortical stroke. This was done using the photothrombotic stroke model targeting the motor and somatosensory cortices of mice. Cerebrovascular morphology as well as the co-localisation of amyloid-ß with vasculature and blood-brain barrier integrity were assessed in the cortex and hippocampal regions at 7, 28 and 84 days post-stroke. Our findings showed transient cerebrovascular remodelling in the peri-infarct area up to 28 days post-stroke. Importantly, the cerebrovascular changes were extended beyond the peri-infarct region to the ipsilateral hippocampus and were sustained out to 84 days post-stroke. When investigating vessel diameter, we showed a decrease at 84 days in the peri-infarct and CA1 regions that were exacerbated in vessels with amyloid-ß deposition. Lastly, we showed sustained vascular leakage in the peri-infarct and ipsilateral hippocampus, indicative of a compromised blood-brain-barrier. Our findings indicate that hippocampal vasculature may represent an important therapeutic target to mitigate the progression of post-stroke cognitive impairment.


Asunto(s)
Accidente Cerebrovascular , Ratones , Animales , Péptidos beta-Amiloides/metabolismo , Barrera Hematoencefálica/metabolismo , Hipocampo/metabolismo , Infarto/complicaciones
4.
Support Care Cancer ; 31(9): 532, 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37606711

RESUMEN

PURPOSE: To examine children's experiences of chemotherapy-induced cognitive impairment--colloquially "chemobrain"--and the impact on children's social, academic, and daily living skills via a qualitative systematic review. Experiencing chemotherapy as a child, when the brain is still developing, may cause lifelong detriment to survivors' lives. There is a significant gap in understanding their lived experience, including the self-identified barriers that children face following treatment. Such a gap can only be fully bridged by listening to the child's own voice and/or parent proxy report through an exploration of the qualitative research literature. METHODS: A search of MEDLINE, Embase, PsycINFO, and CINAHL databases was conducted. Inclusion criteria were qualitative studies with a focus on children (0-18 years) during and/or following chemotherapy treatment and explored children's experiences of chemobrain. RESULTS: Two synthesized findings were identified from six studies. (1) Chemobrain has an academic and psychosocial impact, which may not be understood by education providers. (2) Children and their parents have concerns about their reintegration and adaptation to school, social lives, and their future selves as independent members of society. Children's experiences primarily related to changes in their academic and social functioning. CONCLUSION: This review highlights two important considerations: (1) the lived experiences of pediatric childhood cancer survivors guiding where future interventions should be targeted, and (2) a need to perform more qualitative research studies in this area, as well as to improve the quality of reporting among the existing literature, given that this is a current gap in the field.


Asunto(s)
Supervivientes de Cáncer , Deterioro Cognitivo Relacionado con la Quimioterapia , Disfunción Cognitiva , Neoplasias , Niño , Humanos , Neoplasias/tratamiento farmacológico , Disfunción Cognitiva/inducido químicamente , Sobrevivientes
5.
Int J Mol Sci ; 22(23)2021 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-34884906

RESUMEN

Ischaemic stroke involves the rapid onset of focal neurological dysfunction, most commonly due to an arterial blockage in a specific region of the brain. Stroke is a leading cause of death and common cause of disability, with over 17 million people worldwide suffering from a stroke each year. It is now well-documented that neuroinflammation and immune mediators play a key role in acute and long-term neuronal tissue damage and healing, not only in the infarct core but also in distal regions. Importantly, in these distal regions, termed sites of secondary neurodegeneration (SND), spikes in neuroinflammation may be seen sometime after the initial stroke onset, but prior to the presence of the neuronal tissue damage within these regions. However, it is key to acknowledge that, despite the mounting information describing neuroinflammation following ischaemic stroke, the exact mechanisms whereby inflammatory cells and their mediators drive stroke-induced neuroinflammation are still not fully understood. As a result, current anti-inflammatory treatments have failed to show efficacy in clinical trials. In this review we discuss the complexities of post-stroke neuroinflammation, specifically how it affects neuronal tissue and post-stroke outcome acutely, chronically, and in sites of SND. We then discuss current and previously assessed anti-inflammatory therapies, with a particular focus on how failed anti-inflammatories may be repurposed to target SND-associated neuroinflammation.


Asunto(s)
Accidente Cerebrovascular Isquémico/inmunología , Enfermedades Neurodegenerativas/etiología , Enfermedades Neuroinflamatorias/inmunología , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Ensayos Clínicos como Asunto , Regulación de la Expresión Génica/efectos de los fármacos , Redes Reguladoras de Genes/efectos de los fármacos , Humanos , Accidente Cerebrovascular Isquémico/complicaciones , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Enfermedades Neuroinflamatorias/etiología
6.
Nutr Neurosci ; 23(4): 251-280, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29985117

RESUMEN

Background: The clinical and preclinical exploration of the therapeutic properties of vitamin D have significantly increased in the past decade, owing to the growing associative evidence suggesting vitamin D is neuroprotective. However, whether depletion of vitamin D contributes to the onset of neurological disorders or is a symptom of neurological disease has yet to be defined. Much remains unclear about the causal role of vitamin D and the method of use and forms of vitamin D.Objectives: We sought to quantitatively assess if neuroprotective benefits from vitamin D in neurodegenerative diseases are dependent on route of administration: comparing the effect of endogenously sourced vitamin D from UV exposure to exogenously derived vitamin D through synthetic supplementation.Design: We systematically searched PubMed, Embase and PsycInfo databases which included both pre-clinical and clinical studies investigating vitamin D in neurodegenerative diseases. Articles were subject to strict inclusion criteria and objectively assessed for quality. Additionally, Medline data was analysed to identify trends in topic publications and linguistic characteristics of papers.Results: From a total of 231 screened articles, we identified 73 appropriate for review based on inclusion criteria: original studies that investigated vitamin D levels or levels of vitamin D supplementation in neurodegenerative diseases or investigated past/present sun exposure in disease cohorts. Results indicate there is insufficient evidence to comprehensively reflect on a potential neuroprotective role for vitamin D and if this was dependent on route of administration. The majority of current data supporting neuroprotective benefits from vitamin D are based on pre-clinical and observational studies. Solid evidence is lacking to support the current hypothesis that the beneficial effect of UV exposure results from the synthesis of vitamin D. Sun exposure, independent of vitamin D production, may be protective against multiple Sclerosis, Parkinson's disease and Alzheimer's disease. Yet, further research is required to elucidate the beneficial mechanism of actions of UV exposure. The literature of vitamin D and amyotrophic lateral sclerosis was limited, and no conclusions were drawn. Therefore, in cases where UV-derived vitamin D was hypothesized to be the beneficial mediator in the neuroprotective effects of sun exposure, we propose results are based only on associative evidence.Conclusion: On the basis of this systematic review, strong recommendations regarding therapeutic benefits of vitamin D in neurodegenerative disease cannot be made. It is unclear if vitamin D mediates a protective benefit in neurodegenerative disease or whether it is an associative marker of UV exposure, which may contribute to as of yet unidentified neuroprotective factors.


Asunto(s)
Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/prevención & control , Fármacos Neuroprotectores/administración & dosificación , Vitamina D/administración & dosificación , Animales , Suplementos Dietéticos , Humanos , Luz Solar , Resultado del Tratamiento
7.
Acta Paediatr ; 108(4): 611-614, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30536894

RESUMEN

AIM: To determine whether there are differences between infants who are sharing a sleeping surface with others, compared to those who die alone. METHODS: A literature review was undertaken of PubMed and Google Scholar databases using search terms: sudden infant death syndrome, SIDS, co-sleeping and overlaying. RESULTS: Statistically significant differences were found between the two groups in the sex ratios, and in staining of brain sections for ß-amyloid precursor protein (ß-APP), glial fibrillary acidic protein (GFAP) and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling (TUNEL). There were also higher numbers of nucleated red blood cells (nRBCs) in the peripheral blood of infants who died while co-sleeping. CONCLUSION: The results demonstrate differences between infants who are sharing a sleeping surface with others, compared to those who die alone. It is likely, therefore, that lethal mechanisms for some shared sleepers are not the same as for SIDS infants sleeping alone, and may involve suffocation.


Asunto(s)
Sueño , Muerte Súbita del Lactante/epidemiología , Lechos , Humanos , Lactante , Recién Nacido
8.
Brain Behav Immun ; 73: 125-132, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30009997

RESUMEN

High ultraviolet (UV) light exposure on the skin acts as a reinforcing stimulus, increasing sun-seeking behavior and even addiction-like sun seeking behavior. However, the physiological mechanisms that underlie this process remain to be defined. Here, we propose a novel hypothesis that neuroimmune signaling, arising from inflammatory responses in UV-damaged skin cells, causes potentiated signaling within the cortico-mesolimbic pathway, leading to increased sun-seeking behaviors. This hypothesized UV-induced, skin-to-brain signaling depends upon cell stress signals, termed alarmins, reaching the circulation, thereby triggering the activation of innate immune receptors, such as toll-like receptors (TLRs). This innate immune response is hypothesized to occur both peripherally and centrally, with the downstream signaling from TLR activation affecting both the endogenous opioid system and the mesolimbic dopamine pathway. As both neurotransmitter systems play a key role in the development of addiction behaviors through their actions at key brain regions, such as the nucleus accumbens (NAc), we hypothesize a novel connection between UV-induced inflammation and the activation of pathways that contribute to the development of addiction. This paper is a review of the existing literature to examine the evidence which suggests that chronic sun tanning resembles a behavioral addiction and proposes a novel pathway by which persistent sun-seeking behavior could affect brain neurochemistry in a manner similar to that of repeated drug use.


Asunto(s)
Conducta Adictiva/metabolismo , Neuroinmunomodulación/fisiología , Rayos Ultravioleta/efectos adversos , Alarminas/metabolismo , Alarminas/fisiología , Encéfalo/metabolismo , Dopamina/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Humanos , Inflamación/metabolismo , Sistema Límbico/inmunología , Sistema Límbico/metabolismo , Neuroglía/fisiología , Neuroinmunomodulación/efectos de los fármacos , Neurotransmisores/metabolismo , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/metabolismo , Transducción de Señal/efectos de los fármacos , Receptores Toll-Like/metabolismo
9.
Brain Behav Immun ; 60: 369-382, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27686843

RESUMEN

A history of traumatic brain injury (TBI) is linked to an increased risk for the later development of dementia. This encompasses a variety of neurodegenerative diseases including Alzheimer's Disease (AD) and chronic traumatic encephalopathy (CTE), with AD linked to history of moderate-severe TBI and CTE to a history of repeated concussion. Of note, both AD and CTE are characterized by the abnormal accumulation of hyperphosphorylated tau aggregates, which are thought to play an important role in the development of neurodegeneration. Hyperphosphorylation of tau leads to destabilization of microtubules, interrupting axonal transport, whilst tau aggregates are associated with synaptic dysfunction. The exact mechanisms via which TBI may promote the later tauopathy and its role in the later development of dementia are yet to be fully determined. Following TBI, it is proposed that axonal injury may provide the initial perturbation of tau, by promoting its dissociation from microtubules, facilitating its phosphorylation and aggregation. Altered tau dynamics may then be exacerbated by the chronic persistent inflammatory response that has been shown to persist for decades following the initial impact. Importantly, immune activation has been shown to play a role in accelerating disease progression in other tauopathies, with pro-inflammatory cytokines, like IL-1ß, shown to activate kinases that promote tau hyperphosphorylation. Thus, targeting the inflammatory response in the sub-acute phase following TBI may represent a promising target to halt the alterations in tau dynamics that may precede overt neurodegeneration and later development of dementia.


Asunto(s)
Lesiones Traumáticas del Encéfalo/metabolismo , Demencia/complicaciones , Inflamación/metabolismo , Proteínas tau/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/fisiopatología , Animales , Axones/metabolismo , Lesiones Traumáticas del Encéfalo/complicaciones , Demencia/metabolismo , Humanos , Fosforilación , Tauopatías/metabolismo
10.
Brain Behav Immun ; 64: 124-139, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28412141

RESUMEN

A history of repeated concussion has been linked to the later development of neurodegeneration, which is associated with the accumulation of hyperphosphorylated tau and the development of behavioral deficits. However, the role that exogenous factors, such as immune activation, may play in the development of neurodegeneration following repeated mild traumatic brain injury (rmTBI) has not yet been explored. To investigate, male Sprague-Dawley rats were administered three mTBIs 5days apart using the diffuse impact-acceleration model to generate ∼100G. Sham animals underwent surgery only. At 1 or 5days following the last injury rats were given the TLR4 agonist, lipopolysaccharide (LPS, 0.1mg/kg), or saline. TLR4 activation had differential effects following rmTBI depending on the timing of activation. When given at 1day post-injury, LPS acutely activated microglia, but decreased production of pro-inflammatory cytokines like IL-6. This was associated with a reduction in neuronal injury, both acutely, with a restoration of levels of myelin basic protein (MBP), and chronically, preventing a loss of both MBP and PSD-95. Furthermore, these animals did not develop behavioral deficits with no changes in locomotion, anxiety, depressive-like behavior or cognition at 3months post-injury. Conversely, when LPS was given at 5days post-injury, it was associated acutely with an increase in pro-inflammatory cytokine production, with an exacerbation of neuronal damage and increased levels of aggregated and phosphorylated tau. At 3months post-injury, there was a slight exacerbation of functional deficits, particularly in cognition and depressive-like behavior. This highlights the complexity of the immune response following rmTBI and the need to understand how a history of rmTBI interacts with environmental factors to influence the potential to develop later neurodegeneration.


Asunto(s)
Conmoción Encefálica/inmunología , Encefalitis/inmunología , Receptor Toll-Like 4/inmunología , Animales , Conmoción Encefálica/complicaciones , Conmoción Encefálica/metabolismo , Encefalitis/complicaciones , Encefalitis/metabolismo , Conducta de Enfermedad , Mediadores de Inflamación/inmunología , Mediadores de Inflamación/metabolismo , Lipopolisacáridos/administración & dosificación , Masculino , Microglía/efectos de los fármacos , Microglía/metabolismo , Actividad Motora/efectos de los fármacos , Fosforilación , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Receptor Toll-Like 4/agonistas , Receptor Toll-Like 4/metabolismo , Proteínas tau/metabolismo
11.
Biosci Rep ; 44(3)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38451099

RESUMEN

In addition to aquaporin (AQP) classes AQP1, AQP4 and AQP9 known to be expressed in mammalian brain, our recent transcriptomic analyses identified AQP0 and AQP11 in human cortex and hippocampus at levels correlated with age and Alzheimer's disease (AD) status; however, protein localization remained unknown. Roles of AQP0 and AQP11 in transporting hydrogen peroxide (H2O2) in lens and kidney prompted our hypothesis that up-regulation in brain might similarly be protective. Established cell lines for astroglia (1321N1) and neurons (SHSY5Y, differentiated with retinoic acid) were used to monitor changes in transcript levels for human AQPs (AQP0 to AQP12) in response to inflammation (simulated with 10-100 ng/ml lipopolysaccharide [LPS], 24 h), and hypoxia (5 min N2, followed by 0 to 24 h normoxia). AQP transcripts up-regulated in both 1321N1 and SHSY5Y included AQP0, AQP1 and AQP11. Immunocytochemistry in 1321N1 cells confirmed protein expression for AQP0 and AQP11 in plasma membrane and endoplasmic reticulum; AQP11 increased 10-fold after LPS and AQP0 increased 0.3-fold. In SHSY5Y cells, AQP0 expression increased 0.2-fold after 24 h LPS; AQP11 showed no appreciable change. Proposed peroxiporin roles were tested using melondialdehyde (MDA) assays to quantify lipid peroxidation levels after brief H2O2. Boosting peroxiporin expression by LPS pretreatment lowered subsequent H2O2-induced MDA responses (∼50%) compared with controls; conversely small interfering RNA knockdown of AQP0 in 1321N1 increased lipid peroxidation (∼17%) after H2O2, with a similar trend for AQP11 siRNA. Interventions that increase native brain peroxiporin activity are promising as new approaches to mitigate damage caused by aging and neurodegeneration.


Asunto(s)
Acuaporinas , Astrocitos , Proteínas del Ojo , Neuronas , Neuroprotección , Estrés Oxidativo , Humanos , Acuaporinas/genética , Acuaporinas/metabolismo , Astrocitos/metabolismo , Línea Celular , Peróxido de Hidrógeno/metabolismo , Peróxido de Hidrógeno/toxicidad , Lipopolisacáridos/farmacología , Neuronas/metabolismo , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo
12.
Parkinsonism Relat Disord ; 118: 105957, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38101025

RESUMEN

INTRODUCTION: Fyn kinase is an Src family kinase (SFK) widely expressed in many tissues, including the CNS. Recently, Fyn kinase activation has been associated with pathological mechanisms underlying neurodegenerative diseases and, as such, the role of Fyn dysfunction is under investigation. In particular, Fyn is implicated as a major upstream regulator of neuroinflammation in Parkinson's Disease (PD). Chronic neuroinflammation has been observed not just in the substantia nigra (SN), but also in several key regions of the brain, with disruption associated with symptoms presentation in PD. This study aimed to characterise the anatomical distribution of Fyn in key brain regions affected in PD, namely the prefrontal cortex, hippocampus, striatum and SN. METHODS: Fresh and fixed post-mortem PD brain samples (n = 10) were collected and compared with neurologically healthy age-matched controls (n = 7) to assess markers of Fyn activity and neuroinflammation. RESULTS: Increased Fyn phosphorylation was observed in SN and striatum of post-mortem samples from PD patients compared with controls. No such increase was observed in the prefrontal cortex or hippocampus. In contrast with previous findings, no increase in microglial activation or astrocyte reactivity was observed in PD brains across regions. CONCLUSION: Taken together, these results indicate that Fyn dysfunction may be involved in the pathological processes observed in PD; however, this appears to be independent of inflammatory mechanisms. Further investigations are required to elucidate if increased Fyn activity is a potential cause or consequence of pathological processing in PD.


Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/complicaciones , Enfermedades Neuroinflamatorias , Encéfalo/patología , Sustancia Negra/patología , Fosforilación
13.
Nat Commun ; 15(1): 1210, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38331934

RESUMEN

We implicated the X-chromosome THOC2 gene, which encodes the largest subunit of the highly-conserved TREX (Transcription-Export) complex, in a clinically complex neurodevelopmental disorder with intellectual disability as the core phenotype. To study the molecular pathology of this essential eukaryotic gene, we generated a mouse model based on a hypomorphic Thoc2 exon 37-38 deletion variant of a patient with ID, speech delay, hypotonia, and microcephaly. The Thoc2 exon 37-38 deletion male (Thoc2Δ/Y) mice recapitulate the core phenotypes of THOC2 syndrome including smaller size and weight, and significant deficits in spatial learning, working memory and sensorimotor functions. The Thoc2Δ/Y mouse brain development is significantly impacted by compromised THOC2/TREX function resulting in R-loop accumulation, DNA damage and consequent cell death. Overall, we suggest that perturbed R-loop homeostasis, in stem cells and/or differentiated cells in mice and the patient, and DNA damage-associated functional alterations are at the root of THOC2 syndrome.


Asunto(s)
Discapacidad Intelectual , Factores de Transcripción , Humanos , Masculino , Ratones , Animales , Factores de Transcripción/metabolismo , Estructuras R-Loop , Transporte Activo de Núcleo Celular , Discapacidad Intelectual/genética , Daño del ADN , Fenotipo , ARN Mensajero/metabolismo
14.
Eur J Neurosci ; 38(1): 2183-91, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23600953

RESUMEN

Deep brain stimulation (DBS) of the subthalamic nucleus is increasingly being employed as a treatment for parkinsonian symptoms, including tremor. The present studies used tremulous jaw movements, a pharmacological model of tremor in rodents, to investigate the tremorolytic effects of subthalamic DBS in rats. Subthalamic DBS reduced the tremulous jaw movements induced by the dopamine D2 family antagonist pimozide and the D1 family antagonist ecopipam, as well as the cholinomimetics pilocarpine and galantamine. The ability of DBS to suppress tremulous jaw movements was dependent on the neuroanatomical locus being stimulated (subthalamic nucleus vs. a striatal control site), as well as the frequency and intensity of stimulation used. Importantly, administration of the adenosine A2A receptor antagonist MSX-3 reduced the frequency and intensity parameters needed to attenuate tremulous jaw movements. These results have implications for the clinical use of DBS, and future studies should determine whether adenosine A2A antagonism could be used to enhance the tremorolytic efficacy of subthalamic DBS at low frequencies and intensities in human patients.


Asunto(s)
Antagonistas del Receptor de Adenosina A2/farmacología , Estimulación Encefálica Profunda , Antagonistas de Dopamina/toxicidad , Enfermedad de Parkinson Secundaria/terapia , Núcleo Subtalámico/fisiopatología , Temblor/terapia , Xantinas/farmacología , Animales , Modelos Animales de Enfermedad , Galantamina/toxicidad , Maxilares/inervación , Maxilares/fisiopatología , Masculino , Movimiento/efectos de los fármacos , Enfermedad de Parkinson Secundaria/inducido químicamente , Pilocarpina/toxicidad , Ratas , Ratas Sprague-Dawley , Núcleo Subtalámico/efectos de los fármacos , Temblor/inducido químicamente
15.
Front Neurol ; 14: 1180353, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37288069

RESUMEN

Introduction: Traumatic brain injury (TBI) is now known to be a chronic disease, causing ongoing neurodegeneration and linked to increased risk of neurodegenerative motor diseases, such as Parkinson's disease and amyotrophic lateral sclerosis. While the presentation of motor deficits acutely following traumatic brain injury is well-documented, however, less is known about how these evolve in the long-term post-injury, or how the initial severity of injury affects these outcomes. The purpose of this review, therefore, was to examine objective assessment of chronic motor impairment across the spectrum of TBI in both preclinical and clinical models. Methods: PubMed, Embase, Scopus, and PsycINFO databases were searched with a search strategy containing key search terms for TBI and motor function. Original research articles reporting chronic motor outcomes with a clearly defined TBI severity (mild, repeated mild, moderate, moderate-severe, and severe) in an adult population were included. Results: A total of 97 studies met the inclusion criteria, incorporating 62 preclinical and 35 clinical studies. Motor domains examined included neuroscore, gait, fine-motor, balance, and locomotion for preclinical studies and neuroscore, fine-motor, posture, and gait for clinical studies. There was little consensus among the articles presented, with extensive differences both in assessment methodology of the tests and parameters reported. In general, an effect of severity was seen, with more severe injury leading to persistent motor deficits, although subtle fine motor deficits were also seen clinically following repeated injury. Only six clinical studies investigated motor outcomes beyond 10 years post-injury and two preclinical studies to 18-24 months post-injury, and, as such, the interaction between a previous TBI and aging on motor performance is yet to be comprehensively examined. Conclusion: Further research is required to establish standardized motor assessment procedures to fully characterize chronic motor impairment across the spectrum of TBI with comprehensive outcomes and consistent protocols. Longitudinal studies investigating the same cohort over time are also a key for understanding the interaction between TBI and aging. This is particularly critical, given the risk of neurodegenerative motor disease development following TBI.

16.
Biomedicines ; 11(3)2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36979749

RESUMEN

The altered expression of known brain Aquaporin (AQP) channels 1, 4 and 9 has been correlated with neuropathological AD progression, but possible roles of other AQP classes in neurological disease remain understudied. The levels of transcripts of all thirteen human AQP subtypes were compared in healthy and Alzheimer's disease (AD) brains by statistical analyses of microarray RNAseq expression data from the Allen Brain Atlas database. Previously unreported, AQPs 0, 6 and 10, are present in human brains at the transcript level. Three AD-affected brain regions, hippocampus (HIP), parietal cortex (PCx) and temporal cortex (TCx), were assessed in three subgroups: young controls (n = 6, aged 24-57); aged controls (n = 26, aged 78-99); and an AD cohort (n = 12, aged 79-99). A significant positive correlation (p < 10-10) was seen for AQP transcript levels as a function of the subject's age in years. Differential expressions correlated with brain region, age, and AD diagnosis, particularly between the HIP and cortical regions. Interestingly, three classes of AQPs (0, 6 and 8) upregulated in AD compared to young controls are permeable to H2O2. Of these, AQPs 0 and 8 were increased in TCx and AQP6 in HIP, suggesting a role of AQPs in AD-related oxidative stress. The outcomes here are the first to demonstrate that the expression profile of AQP channels in the human brain is more diverse than previously thought, and transcript levels are influenced by both age and AD status. Associations between reactive oxygen stress and neurodegenerative disease risk highlight AQPs 0, 6, 8 and 10 as potential therapeutic targets.

17.
Neurotrauma Rep ; 4(1): 41-50, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36726871

RESUMEN

Traumatic brain injury (TBI) is associated with persistent impairments in multiple domains, including cognitive and neuropsychiatric function. Previous literature has suggested that the risk of such impairments may differ as a function of the initial severity of injury, with moderate-severe TBI (msTBI) associated with more severe cognitive dysfunction and mild TBI (mTBI) associated with a higher risk of developing an anxiety disorder. Despite this, relatively few pre-clinical studies have investigated the time course of behavioral change after different severities of injury. The current study compared the temporal profile of functional deficits incorporating locomotion, cognition, and anxiety up to 12 months post-injury after an mTBI, repeated mild TBI (rmTBI), and single msTBI in an experimental model of diffuse TBI. Injury appeared to alter the effect of aging on locomotor activity, with both msTBI and rmTBI rats showing a decrease in locomotion at 12 months relative to their earlier performance on the task, an effect not observed in shams or after a single mTBI. Further, mTBI seemed to be associated with decreased anxiety over time, as measured by increased time spent in the open arm of the elevated plus maze from 3 to 12 months post-injury. No significant findings were observed on spatial memory or volumetric magnetic resonance imaging. Future studies will need to use a more comprehensive behavioral battery, capable of capturing subtle alterations in function, and longer time points, following rats into old age, in order to more fully assess the evolution of persistent behavioral deficits in key domains after different severities of TBI, as well as their accompanying neuroimaging changes. Given the prevalence and significance of such deficits post-TBI for a person's quality of life, as well as the elevated risk of neurodegenerative disease post-injury, such investigations may play a critical role in identifying optimal windows of therapeutic intervention post-injury.

18.
Neurosci Biobehav Rev ; 148: 105120, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36906244

RESUMEN

Chemotherapy-induced cognitive impairment (CICI) is a debilitating condition resulting from chemotherapy administration for cancer treatment. CICI is characterised by various cognitive impairments, including issues with learning, memory, and concentration, impacting quality of life. Several neural mechanisms are proposed to drive CICI, including inflammation, therefore, anti-inflammatory agents could ameliorate such impairments. Research is still in the preclinical stage; however, the efficacy of anti-inflammatories to reduce CICI in animal models is unknown. Therefore, a systematic review was conducted, with searches performed in PubMed, Scopus, Embase, PsycInfo and Cochrane Library. A total of 64 studies were included, and of the 50 agents identified, 41 (82%) reduced CICI. Interestingly, while non-traditional anti-inflammatory agents and natural compounds reduced impairment, the traditional agents were unsuccessful. Such results must be taken with caution due to the heterogeneity observed in terms of methods employed. Nevertheless, preliminary evidence suggests anti-inflammatory agents could be beneficial for treating CICI, although it may be critical to think beyond the use of traditional anti-inflammatories when considering which specific compounds to prioritise in development.


Asunto(s)
Antineoplásicos , Deterioro Cognitivo Relacionado con la Quimioterapia , Disfunción Cognitiva , Animales , Antineoplásicos/efectos adversos , Calidad de Vida , Deterioro Cognitivo Relacionado con la Quimioterapia/tratamiento farmacológico , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/tratamiento farmacológico , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico
19.
ACS Omega ; 7(1): 823-836, 2022 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-35036749

RESUMEN

Encapsulins, self-assembling icosahedral protein nanocages derived from prokaryotes, represent a versatile set of tools for nanobiotechnology. However, a comprehensive understanding of the mechanisms underlying encapsulin self-assembly, disassembly, and reassembly is lacking. Here, we characterize the disassembly/reassembly properties of three encapsulin nanocages that possess different structural architectures: T = 1 (24 nm), T = 3 (32 nm), and T = 4 (42 nm). Using spectroscopic techniques and electron microscopy, encapsulin architectures were found to exhibit varying sensitivities to the denaturant guanidine hydrochloride (GuHCl), extreme pH, and elevated temperature. While all three encapsulins showed the capacity to reassemble following GuHCl-induced disassembly (within 75 min), only the smallest T = 1 nanocage reassembled after disassembly in basic pH (within 15 min). Furthermore, atomic force microscopy revealed that all encapsulins showed a significant loss of structural integrity after undergoing sequential disassembly/reassembly steps. These findings provide insights into encapsulins' disassembly/reassembly dynamics, thus informing their future design, modification, and application.

20.
Front Aging Neurosci ; 14: 728212, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35422697

RESUMEN

Whilst Parkinson's disease (PD) is typically thought of as a motor disease, a significant number of individuals also experience cognitive impairment (CI), ranging from mild-CI to dementia. One technique that may prove effective in delaying the onset of CI in PD is cognitive training (CT); however, evidence to date is variable. This may be due to the implementation of CT in this population, with the motor impairments of PD potentially hampering the ability to use standard equipment, such as pen-and-paper or a computer mouse. This may, in turn, promote negative attitudes toward the CT paradigm, which may correlate with poorer outcomes. Consequently, optimizing a system for the delivery of CT in the PD population may improve the accessibility of and engagement with the CT paradigm, subsequently leading to better outcomes. To achieve this, the NeuroOrb Gaming System was designed, coupling a novel accessible controller, specifically developed for use with people with motor impairments, with a "Serious Games" software suite, custom-designed to target the cognitive domains typically affected in PD. The aim of the current study was to evaluate the usability of the NeuroOrb through a reiterative co-design process, in order to optimize the system for future use in clinical trials of CT in individuals with PD. Individuals with PD (n = 13; mean age = 68.15 years; mean disease duration = 8 years) were recruited from the community and participated in three co-design loops. After implementation of key stakeholder feedback to make significant modifications to the system, system usability was improved and participant attitudes toward the NeuroOrb were very positive. Taken together, this provides rationale for moving forward with a future clinical trial investigating the utility of the NeuroOrb as a tool to deliver CT in PD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA